
Luo et al. Cardiovasc Diabetol           (2019) 18:54  
https://doi.org/10.1186/s12933-019-0860-y

REVIEW

Metformin in patients with and without 
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Abstract 

With an increasing global burden of coronary artery disease (CAD), early detection and timely management of risk 
factors are crucial to reduce morbidity and mortality in such patients. Diabetes mellitus (DM) is considered an inde-
pendent risk factor for the development of CAD. Metformin, an anti-diabetic drug, has been shown in pre-clinical and 
clinical studies, to lower the cardiovascular events in the DM patients. Growing evidence suggests that metformin has 
a protective effect on coronary artery beyond its hypoglycemic effects. Given its global availability, route of adminis-
tration and cost, metformin provides an alternate/additional therapeutic option for primary and secondary preven-
tion of CAD in DM and non-diabetics alike. Future prospective cohort-based studies and randomized clinical trials are 
needed to identify ‘at-risk’ population who may potentially benefit from metformin.
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Introduction
Coronary artery disease (CAD) is among the leading 
cause of mortality and morbidity worldwide and puts 
an enormous economic burden in the society [1]. There 
are multiple risk factors of CAD like tobacco, obesity, 
hypertension and high blood cholesterol [2]. Diabetes 
mellitus (DM) is considered to be an independent risk 
factor in the development of CAD [3]. Macrovascular 
complications of DM, involving the cardiovascular sys-
tem, constitute the leading cause of death in longstand-
ing diabetics [4–6]. Metformin, a prominent biguanide 
class of drugs, controls the level of blood glucose in the 
body through lowering of the peripheral insulin resist-
ance and concurrent decrease in intestinal absorption 
of glucose [7]. Current treatment guidelines recommend 
the use of metformin as a first-line therapy for patients 
with DM [8]. While primarily used as an anti-diabetic 
drug, other pleiotropic effects of metformin remained 
largely unexplored. Burgeoning evidence points towards 

the cardioprotective effects of metformin in its improve-
ment of cardiovascular outcomes in patients with well-
defined risk factors. Although clinical trials conducted 
on diabetic patients clearly demonstrated the therapeutic 
potential of metformin in reducing cardiovascular mor-
tality and morbidity in DM patients [9], their beneficial 
effects in non-diabetic patients remain unclear. The car-
dioprotective effect of metformin in DM patients can 
be attributed to its anti-atherosclerotic property. In this 
article, we review the existing literature reporting the 
anti-atherosclerotic property of metformin in the cardio-
vascular space (Fig. 1).

Cardiovascular effects of metformin: clinical 
scenario
Metformin in diabetes mellitus (DM)
Type 2 diabetes mellitus (T2DM) is considered as an 
independent risk factor for the development of CAD 
[10]. Therefore, tight blood glucose control is critical to 
limit the mortality and morbidity from CVD in T2DM 
patients. Metformin, a first line anti-diabetic drug, has 
been reported to reduce major cardiovascular events 
associated with atherosclerotic cardiovascular disease 
(ASCVD) in T2DM patients or improve the surrogate 
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endpoints of ASCVD such as carotid intima-media thick-
ness (CIMT). A landmark study in this area was the UK 
Protective Diabetes Study (UKPDS) [11], which ran-
domized 1704 overweight (> 120% ideal body weight) 
patients with newly diagnosed T2DM to receive con-
ventional treatment with diet alone in one trial arm or 
either metformin, sulphonylurea, or insulin in the other. 
After a median follow up of 10.7  years, the metformin 
group had a 36% lower all-cause mortality (P = 0.011) 
and a concurrent a 39% lower risk (P = 0.011) in the inci-
dence of myocardial infarction than the conventional 

treatment group but did not differ significantly from the 
other intensive glucose control treatment group. How-
ever, in a combined analysis of a supplementary of the 
same clinical trial, where 537 non-overweight and over-
weight patients with uncontrolled plasma blood glucose 
(6.1–15.0 mmol/L) were treated with sulfonylureas with 
and without metformin, the effect of metformin on car-
diovascular outcomes was not statistically significant. 
A possible explanation of this phenomenon could be 
related to the beneficial effect of tight glycemic control 
from metformin that prevented future cardiovascular 

Fig. 1  Beneficial pleiotropic effects of metformin on cardiovascular and the potential mechanisms. SREBP sterol regulatory element-binding 
proteins, ABCA1 ATP-binding cassette transporter A1, AMPK AMP-activated protein kinase, NO nitric oxide, ER endoplasmic reticulum, HDL 
high-density lipoprotein
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consequences. Subsequent follow-up study of 10  years 
after UKPDS, however, reported continuous risk reduc-
tion of myocardial infarction (33%, P = 0.005) in patients 
treated with metformin despite no changes in the gly-
cated hemoglobin (HbA1c) levels [12]. Since no new 
glucose-lowering therapy was introduced in the study 
cohort during this period, the results highlight the ben-
eficial cardiovascular effects of metformin. This effect of 
metformin was particularly pronounced among over-
weight patients after a long duration of follow-up. In a 
continued effort to study the add-on effects of metformin 
on macrovascular or microvascular disease in insulin-
treated T2DM patients, Kooy et al. [13] randomized 390 
T2DM patients, with a mean age of 53 years, to receive 
metformin (850  mg/day) or placebo and followed them 
for 4.3 years. The results show that metformin treatment 
significantly improved the macrovascular end point com-
pared with placebo (HR 0.61, 95% CI 0.40–0.94, P = 0.02), 
which could not be explained solely by the difference in 
weight and metformin-associated changes in metabolic 
or hemodynamic variables, such as HbA1C level [13]. 
Further study by Katakami et al. [14] in a cohort of 118 
patients with T2DM who were randomized to receive 
glibenclamide (n = 59), gliclazide (n = 30), glibenclamide 
plus metformin (n = 29), with a median follow-up dura-
tion of 3  years, also showed that the CIMT in gliben-
clamide plus metformin group was significantly smaller 
than that in the glibenclamide and gliclazide groups in 
univariate and multivariate regression analysis (P < 0.05). 
A meta-analysis of 35 clinical RCTs confirmed the car-
diovascular benefits of metformin in comparison to pla-
cebo in younger population followed over a long duration 
[15]. Taken together, these observations strengthen the 
rationale behind the use of metformin in ‘at-risk’ popu-
lation (T2DM patients) from a younger age to decrease 
cardiovascular events.

A seminal study in the field, The study on the prognosis 
and effect of antidiabetic drugs on type 2 diabetes mel-
litus with coronary artery disease (SPREAD-DIMCAD) 
was conducted to evaluate the major cardiovascular 
events and mortality among type 2 diabetic patients with 
CAD after their treatment with glipizide or metformin 
[16]. Among the 304 T2DM patients enrolled for the 
RCT who were followed up for 5  years, the metformin 
group showed a significantly lower cardiovascular end-
point (recurrent cardiovascular events, including non-
fatal myocardial infarction, nonfatal stroke or arterial 
revascularization by percutaneous transluminal coronary 
angioplasty (PTCA) or by coronary artery bypass graft, 
death from a cardiovascular cause) than the glipizide 
group (HR 0.54, 95% CI 0.30–0.90, P = 0.026). However, 
the glycated hemoglobin values in the two groups were 
similar (7.0% vs 7.1%, P > 0.05) [16]. The results were 

‘proof of concept’, suggesting the pleiotropic effects of 
metformin in the heart and blood vessels, independent of 
its glucose-lowering activity.

The REversing with MetfOrmin Vascular Adverse 
Lesions (REMOVAL) Trial is the largest and longest 
double-blind placebo-controlled RCT to evaluate cardi-
ovascular effect of metformin in adults with type 1 DM 
(T1DM) with a median follow up duration of 5 years in 
patients with high cardiovascular risk (have ≥ 3 of 10 
specified cardiovascular risk factors) [17]. In REMOVAL 
trial, 428 insulin-treated patients were randomly assigned 
to metformin and placebo. At a follow-up visit, athero-
sclerosis progression, measured by the averaged maxi-
mal CIMT, was significantly reduced with metformin 
(− 0.013  mm/year, − 0.024 to − 0.003; P = 0.0093) [18], 
indicating possible cardiovascular benefits, but warrants 
further investigation. However, the significant reduction 
in HbA1c (− 0.13%, 95% CI − 0.22 to − 0.037; P = 0.0060) 
over 3  years was more robust over the initial 3-month 
after the commencement of treatment (− 0.24%, − 0.34 to 
− 0.13; P < 0.0001) [18]. In the SPREAD-DIMCAD trial, 
the metformin group showed a significantly lower cardio-
vascular endpoint with similar HbA1c level, suggesting 
the metformin effect is independent of blood sugar level. 
However, in REMOVAL trial, the reduction of CIMT was 
associated with HbA1c reduction with metformin. Taken 
together, the cardioprotective properties of metformin 
appears to be a consequence of its atheroprotective effect 
of metformin. However, the conundrum, concerning the 
association of the atheroprotective effect of metformin 
with its anti-hyperglycemic effects in T1DM patients, 
still remains unanswered.

Recent evidence demonstrates the synergistic effects 
of co-administration of metformin with other drugs. 
Treatment with metformin alongside empagliflozin, a 
new sodium glucose cotransporter-2 (SGLT2) inhibi-
tor, has significantly improved arterial stiffness com-
pared to metformin alone in T1DM patients [19]. The 
effect was higher than either combination of glitazones 
or alpha-glucosidase inhibitors with metformin and 
was also associated with lower major adverse cardio-
vascular events (MACE) risk in comparison to sulph-
onylureas and metformin combinatorial treatment in 
T2DM patients [20]. Metformin with Saxagliptin has 
been shown to improve the endothelial dysfunction in 
early diabetics [21] and its combination with vildaglip-
tin is poised as a viable alternative in the treatment of 
T2DM and CAD due to the lower rate of recurrent car-
diovascular events, in part due to its anti-inflammatory 
property [22]. Even, metformin with ascorbic acid has 
been shown to be effective in reducing risks for diabe-
tes-related long-term complications (including albu-
min/creatinine ratio) [23]. However, increased BMI in 



Page 4 of 9Luo et al. Cardiovasc Diabetol           (2019) 18:54 

metformin-exposed children during intrauterine devel-
opment might confer them a higher risk of developing 
cardiometabolic diseases later in their adulthood [24]. 
Recent evidence supports the use of liraglutide as a 
viable alternative to metformin for recent-onset T2DM 
in women during their child-bearing age to circumvent 
such clinical scenarios [25].

Metformin in non‑diabetics
Although the cardiovascular benefits with metformin 
are well-established in diabetic patients, their role in 
non-diabetic patients remains elusive. In a small rand-
omized double-blind placebo-controlled study consisting 
of 33 non-diabetic women, it was shown that metformin 
can reduce myocardial ischemia in female patients with 
angina, compared to placebo [26]. However, a study by 
Hao et al. [9] consisting of 130 patients with dyslipidemia 
and obesity who were randomized to atorvastatin or 
atorvastatin plus metformin, showed atorvastatin com-
bined with metformin was more effective than atorvas-
tatin monotherapy group in improving the rate of obesity 
and subclinical inflammation. A subsequent study by 
Eduardo et al. [27] confirmed that metformin decreased 
the CIMT (− 0.1  mm, P = 0.04, vs − 0.02  mm, P = not 
significant) in comparison to control group in patients 
with metabolic syndrome, thereby indicating its role in 
cardioprotection.

However, recent studies have questioned the validity of 
the conclusion from prior studies. The Carotid Athero-
sclerosis: MEtformin for insulin ResistAnce (CAMERA) 
[28] study involving 173 non-diabetic patients with CAD 
who were on statin therapy, were assigned to either met-
formin or matching placebo. No improvement in CIMT 
was reported in the metformin group (slope difference 
0.007 mm/year, P = 0.29) when compared with a placebo 
group, although HbA1c, insulin, and insulin resistance 
index decreased significantly in the metformin group 
(P < 0.05) [28]. The possible explanations for the conflict-
ing outcomes in these studies can be attributed to the 
difference in baseline characteristics of the patients (a 
type of disease, age, taking other hypoglycemic and lipid-
lowering drugs), study endpoints and follow-up duration 
of the individual clinical study. Whether metformin has 
a cardiovascular benefit in pre-diabetic patients is not 
clear. An area of active research, ongoing multicenter 
RCT Glucose Lowering in Non-diabetic Hyperglycemia 
Trial (GLINT, ISRCTN34875079) is currently enrolling 
non-diabetic patients for treatment with metformin to 
evaluate the incidence of cardiovascular death and non-
fatal myocardial infarction events. The findings from this 
study will provide more insight in the prophylactic use of 
metformin in a similar cohorts.

Cardiovascular effects of metformin: translational 
and pre‑clinical evidence
The large cache of clinical data demonstrating the car-
dioprotective effects of metformin warrants further 
mechanistic insight. Possible explanations of the cardio-
protective effects of metformin can be due to its pleio-
tropic effects in blood vessels including endothelial cells, 
and smooth muscle cells, blood lipid and chronic sys-
temic inflammation.

Anti‑atherosclerotic effect of metformin
Data accrued over a period of 30  years, has shown that 
metformin can reduce the formation of atherosclerotic 
plaques in animals fed on a high cholesterol diet [29, 
30]. Li et  al. [30] used a high-cholesterol diet to induce 
atherosclerosis in rabbits and studied the anti-athero-
sclerotic effect of metformin. They demonstrated met-
formin significantly reduces atherosclerotic plaque with 
decreased serum high-sensitivity C-reactive protein with 
concurrent inhibition the of NF-κB pathway activation 
in the vascular wall. Recent studies have also found that 
metformin can reduce plaque formation in a high cho-
lesterol diet-induced atherosclerotic Apolipoprotein E 
knockout (ApoE−/−) murine model [31]. Calcification of 
atherosclerotic plaque has been associated with plaque 
instability and acts a strong indicator of poor clinical car-
diovascular outcomes in patients [15, 16]. Recently, Cai 
et al. [32] reported that metformin [100 mg/(kg day)] sig-
nificantly reduced calcification of atherosclerotic plaque 
in ApoE−/− mice fed on a high-fat diet, suggesting that 
metformin may also improve plaque stability. Our prior 
study had also confirmed the anti-atherosclerotic prop-
erty in high-cholesterol fed rabbits [33].

Vascular endothelial protection effect of metformin
Vascular endothelial dysfunction is the first step in ath-
erosclerosis and one of the important pathological pro-
cesses. Clinical studies suggest that metformin may 
significantly improve endothelium-dependent vasodila-
tion in patients with T2DM and polycystic ovarian syn-
drome [34, 35]. In a preclinical experiment, metformin 
has been shown to increase NO-mediated vasodilation in 
endothelial cells in vitro [36]. Further studies have shown 
that it may increase NO production by activating AMPK 
pathway and thus improve vascular endothelial function 
[37]. Studies have also found that activation of AMPKα2 
attenuates endoplasmic reticulum stress in vascular 
endothelial cells [38]. Metformin, being an agonist of 
AMPKα2, can activate AMP-activated protein kinase and 
protect human coronary artery endothelial cells against 
diabetic lipoapoptosis [39], suggesting an alternative 
mechanism of cardioprotective effect in the body.
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Metformin and vascular smooth muscle cells
Vascular smooth muscle cells (VSMCs) proliferation, 
migration and phenotype conversion involved in the 
development of atherosclerosis [40], and calcification 
of VSMCs in atherosclerotic plaque is closely related 
to plaque instability [41]. Studies found that the activa-
tion of AMPKα2 can inhibit the abnormal migration of 
VSMCs, delay the intimal thickening and increase the 
stability of atherosclerotic plaques [42, 43]. Recent ani-
mal studies have shown that metformin can reduce the 
formation of calcification in VSMCs in atherosclerotic 
plaque through the activation of the AMPK pathway [17, 
53]. Therefore, metformin may play an anti-atheroscle-
rotic role through AMPK-mediated VSMCs regulation.

Metformin and blood lipids
LDL-C level is an important risk factor for atherosclero-
sis and every 38.7 mg/dL reduction of LDL-C results in 
a 20% reduction in cardiovascular events [44]. A possi-
ble explanation of the cardioprotective property of met-
formin can be explained by its effects on lowering LDL-C. 
An observational study reported that metformin reduces 
LDL-C in patients with T2DM by about 11.85  mg/dL 
(P < 0.05) [45]. However, multiple pre-clinical studies [18–
20] have also reported that metformin reduce the aortic 
cholesterol deposition and atherosclerotic plaque forma-
tion in high cholesterol diet-induced atherosclerotic rab-
bit or murine models, without affecting their serum total 
cholesterol (TC) and LDL-C levels. Subsequently, three 
RCTs: the CAMERA study (baseline LDL-C level: about 
108.4  mg/dL and 100% of the subjects had statins), the 
HOME study (baseline LDL-C level: about 137.0 mg/dL, 
34% of the subjects used statins) and the SPREAD study 
(baseline LDL-C level of about 107.9 mg/dL and 62% of 
the subjects used statins) did not report any reduction of 
LDL-C levels with metformin [13, 16, 28]. The difference 
in clinical outcomes in various studies can be a conse-
quence of the difference in baseline LDL-C levels and/or 
types of lipid-lowering drugs used. Not surprisingly, both 
HOME and SPREAD had documented the cardiovascu-
lar benefit of metformin, implying that LDL-C reduction 
may not be a primary contributor in its anti-atherogenic 
effects.

In contrast to LDL-C, high-density lipoprotein choles-
terol (HDL-C) has a cardioprotective effect with HDL-C 
levels being inversely associated with cardiovascular 
events. Besides the HDL-C levels, the improvement of 
HDL cholesterol efflux has become a new target for the 
treatment of ASCVD in recent years. Previous stud-
ies indicated impaired HDL function may accelerate 
the development of atherosclerosis [46], and reduced 
HDL cholesterol efflux is associated with an increased 

risk of ASCVD [47]. Patients with diabetes are often 
associated with decreased HDL levels and impaired 
function [48, 49]. Of note, an RCT including 3070 peo-
ple with impaired glucose tolerance reported that met-
formin treatment increases HDL-C levels, but the effect 
wears off after adjusting for body mass index weakened 
(P = 0.06) [50]. The HOME and CAMERA studies also 
yielded similar results [13, 28]. Matsuki et  al. [51] also 
found that HDL-mediated cholesterol efflux was signifi-
cantly reduced after human HDL was glycosylated, and 
HDL-mediated cholesterol efflux returned to normal 
levels after intervention with metformin in glycosylated 
HDL, indicating metformin may exert anti-atheroscle-
rotic function by improving cholesterol reverse function 
of HDL.

Emerging studies have found that elevated triglycer-
ide (TG) levels increase the risk of ASCVD and lower 
blood TG can reduce cardiovascular events [52–55]. In 
pre-clinical studies, metformin treatment (200  mg/kg/
day) in mice for 4 weeks significantly reduced serum TG 
levels under high-fat diet (− 38%, P < 0.05) [56]. Further 
studies found that metformin did not affect the pro-
duction and secretion of very low-density lipoprotein 
(VLDL) in the liver, but promoted the fatty acid oxida-
tion of brown fat, which may be related to the activation 
of adenosine monophosphate-activated protein kinase 
(AMP-activated kinase, AMPK) pathway [56]. We have 
previously shown that metformin ameliorates obesity-
associated hypertriglyceridemia in mice partly through 
the apolipoprotein A5 pathway [57]. Apolipoprotein 
A5 is a novel member of the apolipoprotein family, was 
reported to have a strong ability to decrease serum con-
centrations of TG [58]. Clinical trial, HOME (metformin 
dosage: 850  mg/day) showed no significant difference 
in TG levels between metformin and placebo (0.88 mg/
dL, P = 0.82) [13]. CAMERA study (metformin dos-
age: 1000  mg/day) also found that metformin had no 
significant effect on TG level (− 7.08  mg/dL, P = 0.054). 
However, a systematic review analyzed 41 clinical stud-
ies and found only high doge of metformin (> 1700 mg/
day) decreased plasma TG significantly [59]. The negative 
result may due to the lower dosage used in these trials. 
In all, we can infer that metformin, at higher dose, could 
regulate TG levels and HDL function which may contrib-
ute to the anti-atherosclerotic effect.

Anti‑inflammatory effects of metformin
The chronic inflammatory process leading to atheroscle-
rosis is well-documented [60]. Previous studies showed 
that high-sensitivity C-reactive protein is an independ-
ent risk factor for cardiovascular disease [37]. Li et  al. 
[30] found metformin treatment at a dose of 150 mg/kg 
for 16 weeks significantly reduced serum high-sensitivity 
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C-reactive protein in high-cholesterol diet fed rabbits. A 
possible mechanism of this inverse correlation may be 
related to the inhibition of NF-κB in the vascular wall 
by metformin [30]. In an in vitro study, Isoda et al. [61] 
also found that metformin can inhibit the activation of 
NF-κB in endothelial cells and vascular smooth muscle 
cells in a concentration-dependent manner, thus inhib-
iting the effect of interleukin-1β-induced inflammatory 
cytokines secretion. The mechanism of action of met-
formin has also been shown to be closely related to the 
AMPK pathway [62]. Hattori et al. [63] found metformin 
inhibited the TNF-α-induced activation of NF-κB in a 
dose-dependent manner via activating AMPK, which was 
attenuated by siRNA knockdown of AMPKα1, providing 
a possible explanation for the anti-inflammatory effect 
may be related to AMPK pathway activation.

Metformin and mononuclear macrophages
Atherosclerotic plaques mainly consist of lipid-rich foam 
cells deposited under the intima. Mononuclear mac-
rophages migrate to the intima, phagocytose choles-
terol-containing lipids through cell membrane surface 
scavenger receptors and transform into foam cells. In 
this process, the expressions of cholesterol efflux related 
receptors, such as ATP-binding cassette transporter A1 
(ABCA1) and G1 are downregulated and the cholesterol 
efflux capacity decreased [64, 65]. Promoting the expres-
sion of ABCA1 and ABCG1 can potentially inhibit the 
conversion of monocyte-derived macrophages into foam 
cells which contributes to preventing the formation and 
progression of atherosclerotic plaque. In animal models, 
Vasamsetti et  al. [66] found metformin inhibits angio-
tensin II-induced lipid deposition in macrophages and 
reduces the formation of atherosclerotic plaques. In vitro 
experiments found that metformin inhibits monocytes 
differentiate into macrophages through the AMPK-
STATA3 pathway [67]. Li et al. [68] found that metformin 
can upregulate the expression of ABCG1 in murine mac-
rophages. Our previous study also confirmed that met-
formin could attenuate atherosclerosis by increasing the 
cholesterol efflux capacity of macrophages [33]. We also 
hypothesize that metformin may promote cholesterol 
efflux in macrophages by up-regulating FGF21 expres-
sion [69].

Conclusion
Metformin has been widely used as an anti-diabetic 
drug to treat patients with DM. Its cardioprotective role 
is being increasingly realized beyond its glucose lower-
ing effect, although there may be some overlap of these 
two properties in the systemic cardioprotective effects. 
However, the anti-atherosclerotic effects of metformin, 
independent of its glycemic control remain unclear and 

is an area of active research. Evidence backing the plei-
otropic effects of metformin in reducing CVD-related 
events necessitates further exploration with regard to 
the mechanism of drug action in various tissue compart-
ments. The recent evidence pointing towards its thera-
peutic benefit in heart failure with persevered ejection 
fraction in clinical and preclinical studies underlines the 
need to explore the breadth of the pleiotropic systemic 
effects of metformin [70]. Recent study also reported that 
metformin offers therapeutic benefit during heart failure 
with preserved ejection fraction by lowering titin-based 
passive stiffness in mice model [71], is associated with 
improved survival and decreased incidence of adverse 
cardiac events in peripheral arterial disease patients 
[72] and with a lower below-the-knee arterial calcifica-
tion score [73]. Moreover, metformin is able to prevent 
cardiac dysfunction in a murine model of adult congeni-
tal heart disease [70]. A proper understanding of these 
pleotropic effects will allow us to tailor the dose of the 
drug and remain abreast about its potential side effects 
in patients receiving them. Apart from their use in DM 
patients, its role in primary prevention of cardiovascular 
outcomes in ‘at-risk’ population, akin to statins, requires 
further exploration. Prospective population studies and 
randomized clinical trials need to be conducted to iden-
tify will allow us to identify a subset of patients who may 
benefit from early administration of metformin. This 
will further aid in disease surveillance and intervention 
through enhancement of primary and secondary preven-
tion of CVD.
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