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ORIGINAL INVESTIGATION

Substantial fibrin amyloidogenesis 
in type 2 diabetes assessed using 
amyloid‑selective fluorescent stains
Etheresia Pretorius1*  , Martin J. Page1, Lize Engelbrecht2, Graham C. Ellis1,3 and Douglas B. Kell1,4*

Abstract 

Background:  We have previously shown that many chronic, inflammatory diseases are accompanied, and pos-
sibly partly caused or exacerbated, by various coagulopathies, manifested as anomalous clots in the form of ‘dense 
matted deposits’. More recently, we have shown that these clots can be amyloid in nature, and that the plasma of 
healthy controls can be induced to form such clots by the addition of tiny amounts of bacterial lipopolysaccharide or 
lipoteichoic acid. Type 2 diabetes (T2D) is also accompanied by raised levels of LPS.

Methods:  We use superresolution and confocal microscopies to investigate the amyloid nature of clots from healthy 
and T2D individuals.

Results:  We show here, with the established stain thioflavin T and the novel stains Amytracker™ 480 and 680, that 
the clotting of plasma from type 2 diabetics is also amyloid in nature, and that this may be prevented by the addition 
of suitable concentrations of LPS-binding protein.

Conclusion:  This implies strongly that there is indeed a microbial component to the development of type 2 diabetes, 
and suggests that LBP might be used as treatment for it and its sequelae.

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Introduction
Inflammation is characterised by dysregulated circulat-
ing pro-inflammatory molecules, and such molecules 
have a pathological effect on the haematological sys-
tem. This is true not only of the immune cells, but also 
of erythrocytes (RBCs), platelets and plasma proteins 
such as fibrin(ogen). During inflammation, RBCs experi-
ence structural and biochemical changes, which include 
membrane changes that may be visible as agglutination, 
eryptosis or microparticle formation [1–7]. In addition, 
the structure of the fibrin(ogen) protein changes, and 
this results in anomalous clot formation when fibrino-
gen is hydrolysed by thrombin [8–11]. Haematological 
pathology therefore both reflects and is reflected by a 

pro-coagulant state, which is a hallmark both of inflam-
mation and of the concomitant dysregulated profile of 
circulating pro-inflammatory molecules [8].

Type 2 diabetes (T2D) is an inflammatory condi-
tion that is also characterised by various dysregulated 
cytokines and other molecules that are immunomodula-
tory and of pathophysiological importance [12, 13]. This 
condition is accompanied by many cardiovascular com-
plications, including a thrombotic propensity; however, 
the inflammatory stimulus is often unknown. Impor-
tantly, T2D plasma has aberrant fibrin(ogen) packaging, 
and this is associated with amyloid fibril formation, as 
demonstrated by the amyloid-selective stain thioflavin 
T (ThT) (see [14, 15]) that binds to anomalous clots pre-
pared by adding thrombin to diabetic plasma.

We have recently highlighted the possible and potent 
role of the circulating bacterial-derived inflammagens 
lipopolysaccharide (LPS) and lipoteichoic acids (LTAs) 
on anomalous blood hypercoagulation. LPSs derive from 
the membranes of Gram-negative bacteria [16], while 
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LTAs originate from membranes of Gram-positives [17]. 
Importantly, the literature does support the increased 
circulating LPS in T2D [18–25].

LPS and LTA added to healthy plasma cause amyloido-
genic changes in fibrin(ogen), demonstrated by thioflavin 
T (ThT) binding as well as binding of luminescent con-
jugated oligothiophene dyes (LCOs), marketed under the 
trade name Amytracker™, that also stain classical amy-
loid structures [11]. Various fluorescent markers have 
been shown to illuminate amyloids (e.g. [26–42]). This 
includes the luminescent LCO markers commercialised 
as Amytracker™ 480 and 680 (based on the published 
molecules HS163 and HS169 [43–45]), developed by 
Nilsson and colleagues [43, 44, 46–52].

Here we use these stains to provide evidence for a link 
between T2D as an inflammatory disease and the pres-
ence of amyloid proteins. We also assess the effect of 
different concentrations of LPS-binding protein and the 
antioxidant l-(+)ergothioneine (see, e.g. [53, 54]) on T2D 
plasma, and on purified fibrinogen after addition of LPS, 
to determine if these can decrease amyloid formation 
and the extent to which this could be shown with the two 
LCO dyes and ThT (see Fig. 1; infographic of workflow).

Materials and methods
Sample population
The control sample consisted of 17 age- and gender-
matched (to the T2D sample) healthy individuals and 

Fig. 1  Infographic of workflow and study design
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an additional 17 young healthy individuals. Inflamma-
tion is known to increase with age [55], so we first sought 
to determine if there were differences between the two 
control groups (young versus old), to define if age plays 
a role in our experimental design. This said, it is well-
known that the haematological system is only modestly 
affected by ageing [56]. Exclusion criteria for the healthy 
samples were: known (chronic and acute) inflammatory 
conditions such as asthma, human immunodeficiency 
virus (HIV) or tuberculosis; auto-immune conditions; 
risk factors associated with metabolic syndrome; smok-
ing; and, if female, being on contraceptive or hormone 
replacement treatment. This population did not take any 
anti-inflammatory medication. Based on these exclusion 
criteria we classified these control donors as ostensibly 
healthy. We included individuals in our control group 
that had a range of BMI values, and for some purposes 
we grouped them as individuals with a BMI of either 
<  25 (normal BMI) or ≥  25 (overweight). The distribu-
tion of normal versus overweight healthy individuals 
were: age controlled healthy individuals: <  24.9: 47%; 
> 25: 53% and for the younger healthy individuals: < 24.9: 
88%; > 25: 12%. Although we included overweight, seem-
ingly healthy individuals in our control group, we recog-
nise that it is well-known that several key inflammatory 
markers have been consistently associated with obesity, 
which suggests that a persistent, low-grade, inflamma-
tory response is a potentially modifiable risk factor [57]. 
Therefore, we acknowledge that overweight apparently 
healthy individuals may be more prone to low-grade sys-
temic inflammation and that this may impact on their 
coagulation health.

Our T2D sample consisted of 33 individuals with 
BMI > 25 (overweight). T2D individuals were voluntarily 
recruited from a Diabetic Clinic in Somerset West, South 
Africa. Auto-immune diseases were set as exclusion cri-
teria. Diabetic individuals were diagnosed by an Endocri-
nologist per the Society for Endocrinology, Metabolism 
and Diabetes of South Africa Type 2 Diabetes Commit-
tee (SEMSDA) guidelines [58]. These guidelines follow 
the American Diabetes Association (ADA) criteria to 
define type 2 diabetes. Demographic data including age, 
gender, as well as clinical information including haemo-
globin A1c (HbA1c) levels and medication used by the 
T2D patients were obtained. Inclusion criteria consisted 
of both male and female participants, aged 19 and older, 
with a diagnosis of T2D for more than 3 months prior to 
screening and without any signs of infection. Smoking 
and either contraceptive or hormone replacement treat-
ment were exclusion criteria. Whole blood (WB) of all 
the participants was obtained in citrate tubes. A platelet 
poor plasma (PPP) isolate was prepared by centrifuging 
WB for 15 min at 3000g.

Fluorescent markers and inflammagen binding agents
We aimed to determine if the hypercoagulable clot struc-
ture that we have previously noted in T2D and con-
firmed by staining T2D PPP with thioflavin T (ThT), 
was indeed amyloid in nature [59]. We have also previ-
ously shown that both the LCO dyes Amytracker™ 480 
and 680 bind to amyloid areas in clots of healthy PPP 
exposed to known fibrin–amyloidogenic molecules (viz., 
iron, lipopolysaccharide (LPS) from gram negative bacte-
ria, and two lipoteichoic acids (LTA1 from Staphylococ-
cus aureus (Sigma, L2515) and LTA2 from Streptococcus 
pyogenes [Sigma, L3140)] [11]). It was thus of interest 
to assess if these amyloid markers and ThT will bind to 
amyloid proteins in clots of T2D in a similar pattern as in 
the healthy PPP incubated with amyloidogenic molecules 
that induced amyloidogenic areas (as previously shown 
in [11]). In addition, we investigated if we could induce 
a lowered LCO binding in T2D plasma after the addi-
tion of LPS-binding protein (LBP) (Abcam, AB119721) 
and/or an antioxidant compound, ergothioneine (Sigma 
E7521), to the PPP of T2D (previously we confirmed a 
reduced binding of ThT in T2D plasma after the addition 
of LBP [10]). Here, we analysed all diabetes versus con-
trols, but because of the expense and time it takes for the 
analysis on the confocal microscope, we only looked at a 
random number of 15 diabetes patents that we addition-
ally exposed to LBP and/or Ergothioneine. We also added 
LPS followed by LBP to purified fibrinogen to confirm 
this principle that LPS presence in T2D blood is one of 
(the main) causes of an amyloidogenic fibrin(ogen) struc-
ture (see methods in next section).

The LPS used was from E. coli O111:B4 (Sigma, L2630). 
A final LPS exposure concentration to plasma and puri-
fied fibrinogen of 0.4 ng L−1, and final LPS-binding pro-
tein (LBP) exposure concentrations of 8, 20 and 30 ng L−1 
were used. A final exposure concentration of 250  µM 
ergothioneine (Sigma, E7521) was used. Purified fibrino-
gen (Sigma, F3879) was made up to 0.166 mg mL−1.

Confocal and super‑resolution structured illumination 
(SR‑SIM) microscopy of platelet poor plasma (PPP) clots
Platelet poor plasma (PPP) of all healthy and T2D 
individuals were prepared (as mentioned above), fol-
lowed by storage at − 80 °C. On the day of analysis, the 
− 80 °C-stored PPPs were brought to room temperature, 
followed by a 30-min incubation with ThT at a final con-
centration of 5 µM and Amytracker™ 480 and 680 (0.1 µL 
into 100 µL PPP). LBP (8, 20 and 30 ng L−1 final exposure 
concentration), and ergothioneine (250  µM, final expo-
sure concentration) were also added before addition of 
fluorescent markers. LBP and/or ergothioneine incuba-
tion time was 1  h. Before viewing clots on the confocal 
microscope, thrombin was added in the ratio 1:2, (5  µL 
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thrombin: 10  µL) to create extensive fibrin networks. 
One clot was prepared for each individual and different 
random areas were imaged multiple times. Thrombin 
was provided by the South African National Blood Ser-
vice, and the thrombin solution was at a concentration of 
20 U mL−1 and made up in PBS containing 0.2% human 
serum albumin (see https://www.sigmaaldrich.com/
content/dam/sigma-aldrich/docs/Sigma/Product_Infor-
mation_Sheet/1/t6884pis.pdf for a description of how 
thrombin units are calculated). A coverslip was placed 
over the prepared clot, and samples were viewed using 
a Zeiss LSM 780 with ELYRA PS1 confocal microscope 
with a Plan-Apochromat 63x/1.4 Oil DIC objective. The 
following settings were used:

• • For ThT: the 488 nm excitation laser was used, with 
emission measured at 508–570 nm;

• • For Amytracker™ 480: the 405  nm excitation laser 
was used, with emission measured at 478–539  nm; 
and,

• • For Amytracker™ 680: the 561  nm excitation laser 
was used, with emission measured at 597–695 nm.

A selection of micrographs of the prepared clots were 
captured. Gain settings were kept the same during all 
data capture and used for statistical analyses; however, 
brightness and contrast were slightly adjusted for figure 
preparation. We captured the fluorescent signal of each 
of the three fluorescent markers as a composite.czi file 
in the Zeiss ZEN software and then used ImageJ (FIJI) to 
split and analyse the RGB channels.

Quantification of fluorescent staining of clots
We assessed the variance between (black) background 
and the presence of fluorescent pixels (binary compari-
son) for each of the three fluorescent markers in the 
clots. See [10, 11] for a detailed explanation of the meth-
ods. We used the histogram function in ImageJ (FIJI) 
and calculated the coefficient of variation (CV) (as SD/
mean) of the histogram of different pixel intensities as 
our metric to quantify and discriminate between clots of 

Fig. 2  Example of the histograms generated from diabetes clots 
with added fluorescent markers. (The x-axis represents the grey value 
range (8-bit greyscale [0, 255]) and the y-axis indicates the number 
of total pixels for each grey value.) The histograms were generated 
using FIJI and every composite confocal micrograph contains data 
of all 3 fluorescent markers. In FIJI the channels can be split and ana-
lysed separately, using the histogram function. a Amytracker™ 480; b 
Amytracker™ 680; c ThT

◂

https://www.sigmaaldrich.com/content/dam/sigma-aldrich/docs/Sigma/Product_Information_Sheet/1/t6884pis.pdf
https://www.sigmaaldrich.com/content/dam/sigma-aldrich/docs/Sigma/Product_Information_Sheet/1/t6884pis.pdf
https://www.sigmaaldrich.com/content/dam/sigma-aldrich/docs/Sigma/Product_Information_Sheet/1/t6884pis.pdf
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Table 1  Demographic data of controls and type 2 diabetes

Statistical analysis was performed with the Mann–Whitney U test, using the STATSDIRECT (version 2.8.0) software

Healthy individuals (N = 34)

Gender Age BMI: normal: < 24.9; overweight: > 25

%; median; STD Age-controlled healthy individuals (n = 17)

 F: 82%; M: 18% 61 (± 11) < 24.9: 47%; > 25: 53%

Young healthy individuals (n = 17)

 F: 24% M: 76% 22 (± 4) < 24.9: 88%; > 25: 12%

Type 2 diabetes individuals (N = 33; BMI: > 25)

Gender Age HbA1c (%) Chol (mMol L−1) % with dyslipidaemia 
(%)

% with hyperten‑
sion (%)

% with using  
anti-coagulants (%)

%; median; STD F: 39% M: 61% 62 (± 11) 7 (± 1.2) 3.95 (± 0.74) 79 61 55

Table 2  Results from coefficient of variation (CV calculated from confocal micrographs of clots from healthy and diabetes 
plasma)

Statistical analysis was performed with the Mann–Whitney U test, using the STATSDIRECT (version 2.8.0) software

Confocal data analysis

Confocal data: young (n = 17) versus old (= 17) healthy individuals

Marker Healthy clot CV data  
(age-controlled for T2D)

Healthy young clot CV data P

%; median; STD ThT 1.30 (± 0.61) 1.42 (± 0.64) P = 0.21

Amytracker 480 0.89 (± 0.48) 0.78 (± 1.04) P = 0.08

Amytracker 680 1.30 (± 0.46) 1.34 (± 0.77) P = 0.94

Confocal data: Age-controlled healthy individuals (n = 17) versus type 2 diabetes individuals (N = 33)

Marker Healthy clot CV data  
(age-controlled)

Type 2 diabetes clot CV data P

Median; STD ThT 1.30 (± 0.61) 2.52 (± 1.16) P < 0.0001

Amytracker 480 0.89 (± 0.48) 1.44 (± 0.50) P < 0.0001

Amytracker 680 1.30 (± 0.46) 2.30 (± 0.67) P < 0.0001

Confocal data: Treated versus untreated diabetes data (n = 15)

Marker Untreated T2D T2D plasma treated with 8 ng L−1  
LBP and 250 µM ergothioneine

P

Median; STD ThT 2.23 (± 1.21) 1.58 (± 0.78) P = 0.0008

Amytracker 480 1.25 (± 0.42) 1.25 (± 0.54) P = 0.37

Amytracker 680 1.91 (± 0.73) 1.37 (± 0.55) P = 0.0009

Marker Untreated T2D T2D plasma treated with 20 ng L−1  
LBP and 250 µM ergothioneine

P

Median; STD ThT 2.23 (± 1.21) 1.75 (± 0.61) P = 0.007

Amytracker 480 1.25 (± 0.42) 0.90 (± 0.34) P = 0.0001

Amytracker 680 1.91 (± 0.73) 1.50 (± 0.37) P = 0.0002

Marker Untreated T2D T2D plasma treated with 30 ng L−1 LBP P

Median; STD ThT 2.23 (± 1.21) 1.87 (± 0.60) P = 0.033

Amytracker 480 1.25 (± 0.42) 1.45 (± 2.98) P = 0.036

Amytracker 680 1.91 (± 0.73) 1.70 (± 0.60) P = 0.042
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healthy (age-controlled) naïve PPP and clots from T2D 
individuals. Figure  2 gives an example of the 3 marker 
histograms (Amytracker™ 480, 680 and ThT). CVs were 
calculated from the data shown at the bottom of each 
histogram.

Structured illumination super‑resolution (SR‑SIM) 
microscopy
We also prepared structured illumination super-reso-
lution (SR-SIM) microscopy [60] Z-stacks of T2D clots 
and compared the T2D clots to clots where we previously 
added known amyloidogenic molecules (iron, LPS, LTA1 
and LTA2) to PPP from healthy donors (unpublished data 
from [11]). Previously, we incubated the four candidate 
amyloidogenic molecules for 1 h before adding the three 
fluorescent markers.

Statistical analysis
Sample analysis was performed by the Mann–Whitney 
U test, using the STATSDIRECT (version 2.8.0) software 
and with GraphPad Prism (version 5.0) and one-way 
ANOVA with the Kruskal–Wallis non-parametric test 
and the Dunns post-test.

Results
Table  1 shows demographics of our control groups and 
T2D sample, while Table 2 shows CV results which are cal-
culated by using the mean and SD of the fluorescence for 
each of the three fluorescent markers in the different clots 
(Materials and Methods). There were no significant dif-
ferences in CVs for the three markers when we compared 
the young and the old control PPP clot structure, and we 
therefore conclude age does not appear to influence our 
experimental design. However, there were significant dif-
ferences in CVs for all three markers when the healthy 
(age-matched) individuals and T2D clots were compared. 
Figures 3 and 4 show confocal microscopy of PPP for rep-
resentative clots from healthy and T2D samples. Figure 5 
shows SR-SIM z-stacks of a representative T2D clot and 
also that of a healthy individual with added LPS, LTA1 and 
LTA2 (unpublished data from [11]). In addition, we did 
not find significant differences between our normal and 
overweight BMI control groups, therefore in this paper, we 
group both the normal BMI and overweight individuals as 
the control sample for the T2D sample.

The clots from the T2D patients most resemble that 
of the controls incubated with LPS. We have previously 

Fig. 3  Clots from representative healthy individuals with added amyloid stains. a young individual (median: 22 years) and b age-controlled indi-
vidual (median: 61 years) and from left to right Amytracker 680 (red), Amytracker 480 (blue) and ThT (green)
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suggested that the potent inflammagens LPS and LTA 
can cause aberrant clot formation where the fibrin(ogen) 
protein becomes amyloid(ogenic) after exposure to these 
inflammagens [11]. In this paper, our results show that 
in T2D, amyloidogenesis is also present, as confirmed by 
the 2 LCO markers, and are similar to clots from healthy 
individuals but where LPS and LTA had been added prior 
to coagulation. We thus suggest that this aberrant mor-
phology may (at least in part), be due to the presence of 
bacterial inflammagens in T2D blood.

We also added various concentrations of LPS-binding 
protein (LBP) and the antioxidant ergothioneine to T2D 
plasma to determine if the amyloid signal from the LCO 

dyes will be reduced. See Table 2 for the results as well 
as Fig.  6 for confocal data. These results show a dose-
response in the reduction of fluorescent signal as seen 
with CV data. LBP breaks up the amyloid signal, where 
fewer large fluorescent amyloid clumps are noted, but 
rather more small fluorescent spots are seen (see Fig. 6). 
These data also show rather clearly the differences of 
detail between the binding (sites) of the three fluoro-
phores. Ergothioneine does not significantly reduce the 
amyloid by itself; however, the effects of the addition of 
other antioxidants needs to be explored further (Fig. 7). 
Figure  8 shows a comparison of the confocal results 
[(CVs) of the various LBP exposures to T2D plasma (8, 

Fig. 4  Clots from three type 2 diabetes individuals with added amyloid–specific fluorescent markers (rows a to c represent 3 different individuals 
with type 2 diabetes); columns from left to right Amytracker 680 (red), Amytracker 480 (blue) and ThT (green)
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20 and 30  ng  L−1 LBP], using a one-way ANOVA with 
the Kruskal–Wallis non-parametric test and the Dunns 
post-test.

Purified fibrinogen with added 0.4 ng L−1 LPS followed 
by increasing concentrations of LBP with and without 
ergothioneine showed the same trends, where the amy-
loid signal was dispersed and appeared as small fluores-
cent spots (see Fig. 9).

Discussion
T2D is one of many chronic, inflammatory diseases, and 
as such, shares a variety of hallmarks with these other 
conditions. These include the presence of inflammatory 
cytokines, iron dysregulation, and various coagulopa-
thies [61–65]. What has not been clear is the actual cause 
of this inflammation; that is, what are the stimulating 
molecules to which inflammation is a response? Such a 
cause must exist, as there is otherwise little reason why 
the inflammation might happen ‘spontaneously’ in a way 
that it does not in healthy individuals. A strong candidate 
cause of such systemic inflammation may lie in a dor-
mant microbiome that can shed inflammagens. In nature, 
most microbes exist in a dormant, non-replicating state, 
and as such are typically difficult to culture using stand-
ard microbiological culture techniques (e.g. [66, 67]). A 
lack of culturability may mean that a cell is non-viable 
under the circumstances tested, but they might be cultur-
able in that they may be induced to return to a state of 

culturability (by a process or processes typically referred 
to as ‘resuscitation’) [66, 67].

We have suggested [68–71] that the source of these 
inflammagens is in fact populations of dormant microbes 
that are resident in blood and tissues, and that can occa-
sionally ‘wake up’, often in response to bioavailable iron, 
whereupon they shed known, potent inflammagens such 
as LPS and LTA [11]. LPS has also been specifically impli-
cated in T2D pathology [18–25, 72]. It is suggested that 
LPS may contribute to low-grade systemic inflammation 
in insulin-resistant states, and it is also now accepted that 
specifically gut bacteria is the sources of LPS [24]. In T2D 
it is well-known that there is an increased intestinal per-
meability in the genesis of T2D [73–75], and that this can 
be the origin for LPS.

We have also shown, using scanning electron micros-
copy (e.g. [1, 8, 69, 76–78], that in many cases a particular 
manifestation of the coagulopathies accompanying these 
diseases is the clotting of blood into a highly anomalous 
form. The above two strands of work led to the idea that 
the anomalous clotting might in fact be caused by the 
presence of low concentrations of bacterial–derived LPS, 
and this turned out to be the case when we tested the 
addition of extremely low concentrations of LPS to PPP 
from healthy individuals [9]. Further [9, 77], the fact that 
these clots could be stained with the amyloid stain thi-
oflavin T, and blocked by the addition of LBP, strongly 
suggested (i) that the anomalous clotting was amyloid 

Fig. 5  Z-stacks from a type 2 diabetes, b healthy clot with added LPS (E. coli), c healthy clot with added LTA1 (S. aureus), and d healthy clot with 
added LTA2 (S. pyogenes)
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Fig. 6  Clots from a representative type 2 diabetes individual with added LPS-binding protein (LBP) and ergothioneine, and fluorescent markers. a 
Naïve T2D clot; b 8 ng L−1 LBP and 250 µM ergothioneine; c 20 ng L−1 LBP and 250 µM ergothioneine d 30 ng L−1 LBP. Fluorescence shown from 
left to right Amytracker 680 (red), Amytracker 480 (blue) and ThT (green)
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in nature, and (ii) that LPS (and the potent inflamma-
gen LTA from Gram-positive bacteria) could indeed be 
a typical culprit. We recently showed that both LPS and 
LTA and also iron, cause healthy fibrin(ogen) to become 
amyloidogenic, and we used Amytracker™ 480, 680 and 
ThT in these experiments [11]. We found that the nature 
of the staining efficiencies also varied depending on the 
inflammagen added, with LTA particularly leading to 
preferential staining by Amytracker™ 680.

A logical corollary of the above, then, was that the 
anomalous clotting seen in PPP from patients with 
chronic inflammatory diseases might also be due (at least 
in part) to the presence of LPS, and that this too might 
be reversed by the addition of LBP. We had illustrated 
this previously using the common stain thioflavin T [59, 
77] and here show it further using a variety of micro-
scopic techniques, together with two novel stains, viz. 
Amytracker™ 480 and Amytracker™ 680. In all cases, 
there was a very substantial staining of the PPP from 

T2D patients, and this was removed, in a dose-dependent 
fashion, by the pre-incubation of the PPP with relatively 
low concentrations of lipopolysaccharide binding protein. 
In addition, the detailed nature of the staining varied for 
the three stains, suggested that they had both common 
and separate binding sites, with the two Amytracker™ 
stains being the most potent stains.

Ergothioneine is a potent antioxidant that is resistant to 
autoxidation [53, 54]. However, it was without effect on 
the amyloid staining, suggesting that there is no redox-
dependent basis for these effects. This said, the effects of 
the addition of other antioxidants and/or polyphenolic 
compound need to be explored further.

Overall, we have shown very clearly that there is a sub-
stantial potential for amyloidogenesis when the plasma 
of individuals with T2D is clotted, and that this can be 
prevented by preincubation of the PPP with lipopolysac-
charide-binding protein. This suggests very strongly that 
there is indeed a microbial component involved in the 

Fig. 7  T2D with added 250 µM ergothioneine. Fluorescence shown from left to right Amytracker 680 (red), Amytracker 480 (blue) and ThT (green)

Fig. 8  Graph drawn from the confocal results [(CVs) of the various LBP exposures to type 2 diabetes (8, 20 and 30 ng L−1 LBP]. Sample analysis was 
performed with GraphPad Prism (version 5.0) and one-way ANOVA with the Kruskal–Wallis non-parametric test and the Dunns post-test
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development of T2D and its sequelae. Of course there are 
potentially other circulating inflammatory molecules in 
T2D blood that might contribute to the amyloidogenic 
fibrin(ogen) structure, and some may include iron, LTA, 
SAA and upregulated cytokines. However, in this paper, we 
show that LPS/LTA is one of the important inflammagens 
in T2D, and the LBP removes most of the molecules that 
causes the amyloid formation in fibrin(ogen). Considering 
that amyloids can be cytotoxic, and many of the sequelae of 
chronic T2D involve damage to cells of other tissues such 
as the kidney (nephropathies) and the eye (retinopathies), 
it is at least reasonable that treatments designed either to 
remove the dormant microbes or the use of LBP to remove 
their cell wall products might be of therapeutic benefit. 
This is an important question for the future.
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