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Abstract
Background In this study, we evaluated the lipidome alterations caused by type 1 diabetes (T1D) and type 2 
diabetes (T2D), by determining lipids significantly associated with diabetes overall and in both sexes, and lipids 
associated with the glycaemic state.

Methods An untargeted lipidomic analysis was performed to measure the lipid profiles of 360 subjects (91 T1D, 91 
T2D, 74 with prediabetes and 104 controls (CT)) without cardiovascular and/or chronic kidney disease. Ultra-high 
performance liquid chromatography-electrospray ionization mass spectrometry (UHPLC-ESI-MS) was conducted 
in two ion modes (positive and negative). We used multiple linear regression models to (1) assess the association 
between each lipid feature and each condition, (2) determine sex-specific differences related to diabetes, and (3) 
identify lipids associated with the glycaemic state by considering the prediabetes stage. The models were adjusted 
by sex, age, hypertension, dyslipidaemia, body mass index, glucose, smoking, systolic blood pressure, triglycerides, 
HDL cholesterol, LDL cholesterol, alternate Mediterranean diet score (aMED) and estimated glomerular filtration rate 
(eGFR); diabetes duration and glycated haemoglobin (HbA1c) were also included in the comparison between T1D 
and T2D.

Results A total of 54 unique lipid subspecies from 15 unique lipid classes were annotated. Lysophosphatidylcholines 
(LPC) and ceramides (Cer) showed opposite effects in subjects with T1D and subjects with T2D, LPCs being mainly 
up-regulated in T1D and down-regulated in T2D, and Cer being up-regulated in T2D and down-regulated in T1D. Also, 
Phosphatidylcholines were clearly down-regulated in subjects with T1D. Regarding sex-specific differences, ceramides 
and phosphatidylcholines exhibited important diabetes-associated differences due to sex. Concerning the glycaemic 
state, we found a gradual increase of a panel of 1-deoxyceramides from normoglycemia to prediabetes to T2D.
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Introduction
Diabetes mellitus (DM) is characterized by chronic 
hyperglycaemia that leads to heterogenous disturbances 
of metabolism [1] and its continuing rise is a major con-
cern in society [2]. DM is one of the main risk factors for 
cardiovascular disease and other conditions [3]. There-
fore, a better understanding of diabetes pathophysiology 
has become a subject of major interest in research.

Lipid disruption has been associated with many 
human diseases, leading to the rise in the relevance of 
lipidomics, an emerging field involving the study of lip-
ids and factors that interact with lipids [4]. The associa-
tion between lipids and DM has been widely recognised. 
Advanced lipoprotein analyses have shown a reduction in 
serum concentrations of triglycerides (TG), cholesterol, 
and apolipoprotein (Apo)B-containing lipoproteins when 
comparing subjects at the onset of T1D and after achiev-
ing optimal glycaemic control [5]. In addition, epidemio-
logical studies have shown a close relationship between 
low-density lipoprotein cholesterol (LDL-cholesterol) 
and high-density lipoprotein cholesterol (HDL-choles-
terol) concentrations in T2D. However, the complexity 
of the associations between diabetes and lipid metabo-
lites is underestimated in these studies since lipoproteins 
contain a great variety of lipids that remain unanalysed, 
highlighting the crucial role lipidomics can play [6].

The association between lipid species and T1D still 
needs to be fully understood. Most of the studies have 
focused on biomarker discovery for T1D risk during 
childhood [7]. One study reported several lipid species 
significantly altered in subjects at the onset of T1D and 
after achieving glycaemic control [8]. On the other hand, 
the number of studies focused on lipidomic changes 
associated with T2D risk is higher [9–12]. Lipidome dif-
ferences between normoglycemic, prediabetic and T2D 
subjects have also been described [13], as well as lipid 
species significantly associated with T2D complications, 
such as diabetic retinopathy [14], diabetic neuropathy 
[15] or diabetic nephropathy [16].

Nevertheless, to the best of our knowledge, there is a 
lack of studies comparing the lipidome of subjects with 
T1D and T2D. Moreover, some studies have shown evi-
dence that the risk of diabetes complications differs 
between the sexes [17]; however, the underlying mecha-
nisms behind these sex-specific differences are poorly 
understood.

In the present study, we extensively investigated the 
serum lipidome of T1D, T2D, and non-diabetic subjects 

through an untargeted lipidomics analysis using Ultra 
High-Performance Liquid Chromatography-Mass Spec-
trometry (UHPLC-MS). Our objectives were to identify 
lipid subspecies that differ between (1) subjects with T1D 
and with T2D, (2) subjects with T1D and non-diabetic 
subjects, (3) subjects with T2D and non-diabetic sub-
jects, (4) to determine sex-specific differences in each of 
the above-mentioned comparisons, and (5) compare the 
lipidome between normoglycemia, prediabetes and T2D.

Methods
Participants
In this study, 536 participants including 156 with T1D, 
159 with T2D, and 221 without diabetes and matched by 
sex and BMI, were selected from previous cohorts, at the 
University Hospitals Arnau de Vilanova (Lleida, Spain), 
Germans Trias i Pujol (Badalona, Spain), Clinic (Barce-
lona, Spain), and the Primary Care Center Mollerussa 
(Lleida, Spain) [18–21] (Additional File1 - Figure S1). 
The inclusion criteria for all groups were: aged between 
20 and 85 years, the absence of established chronic kid-
ney disease (defined as calculated glomerular filtra-
tion rate < 60 mL/min and/or urine albumin/creatinine 
ratio > 299 mg/g), and absence of known clinical cardio-
vascular events or associated revascularization proce-
dures, including coronary heart disease, cerebrovascular 
disease, or peripheral vascular disease (including the 
diagnosis of diabetic foot disease).

Age, sex, tobacco exposure and pharmacological treat-
ment were recorded. Diabetes duration was acquired 
from the medical records. Subjects were considered to 
have hypertension or dyslipidaemia if they were under 
anti-hypertensive or lipid-lowering treatment, respec-
tively. Anthropometric data, weight, height, waist cir-
cumference, BMI, and blood pressure were obtained 
using standard methods. The standard biochemical anal-
ysis included glucose and glycated hemoglobin (HbA1c), 
lipid profile, and estimated glomerular filtration rate cal-
culated according to the Chronic Kidney Disease Epi-
demiology Collaboration (CKD-EPI) equation [22]. The 
dietary pattern was assessed using the alternate Mediter-
ranean Diet score (aMED), as described previously [23]. 
This score includes monounsaturated-to-saturated fat 
ratio, legumes, vegetables, nuts, fruits, nuts, cereals, fish, 
meat and wine. This score ranges from 0 to 9, with higher 
scores indicative of a higher adherence to the MedDiet.

Blood samples were collected in the fasting state and 
blood tests were conducted using standard laboratory 
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methods [18]. Urine tests were performed in subjects 
with diabetes following standard laboratory methods. 
Subjects with normoglycemia and prediabetes were clas-
sified using the American Diabetes Association criteria 
(glycated haemoglobin (HbA1c) < 5.7% or fasting plasma 
glucose ≤ 100  mg/dL for normoglycemia; and HbA1c 
between 5.7% and < 6.5% or fasting plasma glucose 
between 101  mg/dL and < 126  mg/dL for prediabetes) 
[24].

Blood samples for the lipidomic analyses were collected 
in the fasting state with EDTA tubes, processed imme-
diately after extraction, and stored at − 80  °C at the bio-
banks of the participant centres until determination.

From the 536 samples, 23 were discarded due to tech-
nical problems, and for the present study, the lipid pro-
files of 360 participants, 91 with T1D, 91 with T2D and 
178 without diabetes were selected from the full cohort 
(Additional File 1 - Figure S1). Serum samples for all the 
selected participants were collected by University Hospi-
tal Arnau of Vilanova (Lleida, Spain) and the Mollerussa 
Primary Health care area (Lleida, Spain), as part of previ-
ously published studies [18–20]. The acquisition, process-
ing and storage of these samples were performed in the 
same facility, and the geographic location of the subjects 
was the same, thus avoiding any variability due to sample 
origin that might be present in the full cohort (Additional 
File 1 - Figure S1).

Sample preparation
Due to the large number of samples in the full cohort, 
samples were randomly assigned to one of 6 batches. To 
reduce the impact of technical factors, the sample order 
within each batch was randomized before sample prepa-
ration, and then again prior to measurement of the lipid 
profile by UHPLC-ESI-MS/MS. All serum samples were 
defrosted on ice, and each sample was aliquoted (50 µL) 
to create a pooled quality control (QC) representative of 
all samples in the study. The pooled QC was vortexed, 
further aliquoted (50 µL), and stored at -80  °C until the 
analysis of each of the 6 batches of QC samples. Lipid 
extraction was performed by mixing 50 µL of biological 
sample or QC with 150 µL isopropanol (LC-MS grade), 
vortexed for 20 s, and centrifuged at 22,000 g for 20 min 
at 4  °C. 120 µL of the supernatant was transferred to a 
low recovery vial and transferred to the LC sample man-
ager at 4 °C.

Ultra-high-performance liquid chromatography-mass 
spectrometry
Samples were maintained at 4 °C and analysed by apply-
ing UHPLC-MS methods using a Dionex UltiMate 3000 
Rapid Separation LC system (Thermo Fisher Scientific, 
MA, USA) coupled with a heated electrospray Q Exac-
tive Focus mass spectrometer (Thermo Fisher Scientific, 

MA, USA). Non-polar extracts were analysed on a 
Hypersil GOLD column (100 × 2.1 mm, 1.9 μm; Thermo 
Fisher Scientific, MA, USA). Mobile phase A consisted 
of 10 mM ammonium formate and 0.1% formic acid in 
60% acetonitrile/water and mobile phase B consisted of 
10 mM ammonium formate and 0.1% formic acid in 90% 
propan-2-ol/water. Flow rate was set for 0.40 mL/min 
with the following gradient: t = 0.0, 20% B; t = 0.5, 20% 
B, t = 8.5, 100% B; t = 9.5, 100% B; t = 11.5, 20% B; t = 14.0, 
20% B, all changes were linear with curve = 5. The column 
temperature was set to 55  °C and the injection volume 
was 2µL. Data were acquired in positive and negative 
ionization mode separately within the mass range of 
150–2000 m/z at resolution 70,000 (FWHM at m/z 200). 
Ion source parameters were: sheath gas = 50 arbitrary 
units, Aux gas = 13 arbitrary units, sweep gas 3 arbitrary 
units, spray voltage 3.5 kV (positive ion mode) and 3.1 kV 
(negative ion mode), Capillary temp = 263  °C, and Aux 
gas heater = 425  °C. Data dependent MS2 in ‘Discover 
mode’ was applied for the MS/MS spectral acquisition 
with the following settings: resolution at 17,500 (FWHM 
at m/z 200), isolation width 3.0 m/z, stepped normalised 
collision energy at 20, 50 and 80%. Spectra were acquired 
at three mass ranges 200–400 m/z, 400–700 m/z and 
700–1500 m/z on the pooled QC samples. Thermo Exac-
tiveTune (2.8 SP1 build 2806) software was used to con-
trol the instrument in both cases, with data acquired in 
profile mode. Quality control samples were acquired in 
both profile and dependent scan mode at the start of the 
run (i.e., 7 QCs MS1 only, 3 QCs with MS2) and then 
every seventh injection with two QC samples at the end 
of the analytical batch. Preparation blank samples were 
analysed between QCs 5 and 6 and at the end of the ana-
lytical batch.

Mass spectrometry raw data processing
Raw data acquired in each analytical batch were con-
verted from the instrument-specific format to a mzML 
file format using the open access ProteoWizard (version 
3.0.11417) msconvert tool [25]. Deconvolution was per-
formed by the R package XCMS (version 1.46.0, running 
in the Galaxy workflow environment) [26]. Isotopologue 
Parameter Optimization (IPO - version 1.0.0) [27] was 
used to optimise the XCMS peak picking parameters. A 
data matrix of metabolite features (m/z-retention time 
pairs) versus samples was constructed with peak areas 
provided.

Assessment of data quality and peak matrix filtering
The first five QCs for each batch were used to equili-
brate the analytical system and therefore subsequently 
removed before the data was processed and analysed. 
Data matrices were corrected for run-order drift in inten-
sity for each lipid feature separately using the Quality 
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Control-Robust Spline Correction (QC-RSC) algorithm 
[28] in the R environment using the pmp package [29]. 
Principal Component Analysis (PCA) was used to iden-
tify and remove (PCs 1 and 2, Hotelling T2p < 0.05) sus-
pected outlier (QC) samples within each batch to ensure 
robust correction. Blank samples at the start and end of 
a run were used to remove features from non-biological 
origins. Any feature with an average QC intensity less 
than 20 times the average intensity of the blanks was 
removed. Any sample with > 50% missing values was 
excluded from further analysis. Metabolite features with 
RSD > 30% and present in less than 90% of the QC sam-
ples were deleted from the dataset. Features with a < 50% 
detection rate over all samples were also removed. All 
data preparation steps were undertaken in R using the 
structToolbox package [30, 31].

Statistical analysis
After removing the observations with missing values 
in the variables included in the models (Additional File 
1 - Figure S1), the clinical data of participants was sum-
marised as mean (standard deviation) for continuous 
variables and as frequency (percentage) for categorical 
data, using the compareGroups R package [32].

Analysis of the UHPLC-ESI-MS/MS data was con-
ducted in the R environment [33]. Prior to the statistical 
analysis, Probabilistic Quotient Normalization (PQN) 
[34], using the mean of the QC samples as a reference, 
was applied. Data were log-transformed to reduce 
skewness.

Multiple linear regression models were used to assess 
the association between each metabolite and T1D, T2D, 
and non-diabetic controls (CT). Three different compari-
sons were performed: T1D against T2D, T1D against CT, 
and T2D against CT. The models were adjusted by sex, 
age, hypertension, dyslipidaemia, body mass index, glu-
cose, smoking, systolic blood pressure, TG, HDL choles-
terol, LDL cholesterol, alternate Mediterranean diet score 
and estimated glomerular filtration rate (eGFR); diabetes 
duration and glycated haemoglobin (HbA1c) were also 
included in the T1D and T2D comparison.

Regarding the sex-specific differences related to dia-
betes, the same linear models were used, but an inter-
action term between diabetes and sex (basal level: men) 
was added. Using this configuration, the p-value and 
regressor (βMen) associated with the diabetes variable 
were assigned to men. The effect of diabetes in women 
(βWomen) was computed by summing the regressor of the 
diabetes variable and the interaction between diabetes 
and sex. The standard error of the effect was computed, 
the t-value was obtained by dividing βWomen by its stan-
dard error, and the p-value associated with diabetes in 
women was computed using this t-value.

Concerning the lipid alterations associated with the 
glycaemic state, we considered the following categories: 
normoglycemia, prediabetes and T2D. The models were 
adjusted using the confounding factors mentioned above, 
and a numeric variable defining the glycaemic state: 0, 
normoglycemia; 1, prediabetes; 2, T2D.

In all analyses, False Discovery Rate (FDR) correction 
was performed, and a corrected p-value of < 0.05 was 
considered significant. For each comparison, we present 
significant p-values that correspond to lipids when not 
considering the interaction effect between diabetes and 
sex (all subjects), p-values for men, p-values for women, 
and p-values for the glycaemic state.

A description of each analysis is shown in Additional 
File 1 (Table S1). LipidSearch was used to annotate lipid 
species. Annotations with grades A or B were mapped to 
XCMS-detected features based on an absolute ppm error 
less than 5 and an absolute retention time tolerance of 
less than 5 s.

Results
Clinical and biological parameters
The baseline characteristics for each group according to 
diabetes status are shown in Table 1. Subjects with T1D 
had longer diabetes duration, and higher HDL-choles-
terol in comparison with subjects with T2D. On the other 
hand, subjects with T2D were older, had a higher BMI, 
higher HbA1c, and higher frequency of hypertension and 
dyslipidaemia. In Additional File 1 (Table S2), the base-
line characteristics for each comparison are shown.

Data are mean (SD) for continuous variables and num-
ber (%) for categorical variables. For continuous variables, 
the p-values are obtained using a student’s t-test and for 
categorical variables, a chi-squared test. BMI, body mass 
index; DM, diabetes mellitus; HbA1c, glycated haemo-
globin; sBP, systolic blood pressure; dBP, diastolic blood 
pressure; TG, triglycerides; HDL, high-density lipoprotein; 
LDL, low-density lipoprotein; aMED, alternate Mediter-
ranean diet score; eGFR, estimated glomerular filtration 
rate.

Lipid markers of diabetes mellitus
Table  2 shows the overall number of lipidomic features 
that were significantly different in the comparisons (cor-
rected p-value lower than 0.05), and of those, the number 
that were annotated using LipidSearch. When comparing 
T1D and T2D subjects, 30 lipid species (positive and neg-
ative ion modes combined) obtained a corrected p-value 
lower than 0.05 both in males and females (all subjects), 
16 lipids were found in females and 17 in males. In the 
comparison between T1D and CT, 35 lipids were statisti-
cally significant in all subjects, 11 lipids in women only, 
and 16 in men only. Finally, when comparing T2D vs. CT, 
15 lipids were significantly different in all subjects, 10 in 
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Table 1 Baseline characteristics of subjects with type 1, type 2 diabetes, prediabetes and normoglycemia
Control Prediabetes T1D T2D P-value
N = 100 N = 69 N = 59 N = 86

Sex (men) 60 (60.0%) 34 (49.3%) 27 (45.8%) 46 (53.5%) 0.308
Age (years) 53.1 (12.3) 56.7 (11.9) 50.7 (9.9) 58.0 (10.0) < 0.001
Hypertension (yes) 17 (17.0%) 19 (27.5%) 22 (37.3%) 48 (55.8%) < 0.001
Dyslipidemia (yes) 26 (26.0%) 30 (43.5%) 30 (50.8%) 49 (57.0%) < 0.001
BMI (kg/m2) 25.7 (3.6) 27.8 (4.2) 25.5 (3.6) 31.7 (5.6) < 0.001
Waist circumference (cm) 94.5 (11.7) 99.3 (11.4) 89.1 (12.2) 106 (12.4) < 0.001
DM duration (years) . . 24.6 (10.4) 10.6 (7.7) < 0.001
HbA1c (%) 5.26 (0.28) 5.73 (0.31) 7.58 (0.94) 8.16 (1.54) < 0.001
Glucose (mg/dL) 88.0 (7.1) 95.3 (9.5) 154.0 (79.4) 169.0 (61.2) < 0.001
Smoking (former/current) 41 (41.0%) 42 (60.9%) 31 (52.5%) 52 (60.5%) 0.024
sBP (mmHg) 122 (15) 129 (14) 130 (19) 139 (18) < 0.001
dBP (mmHg) 77 (10) 80 (9) 71 (10) 77 (11) < 0.001
TG (mg/dL) 105.0 (50.6) 124.0 (58.3) 68.9 (38.1) 127.0 (65.8) < 0.001
HDL-cholesterol (mg/dL) 58.0 (15.2) 56.3 (11.3) 65.5 (16.8) 49.0 (12.7) < 0.001
LDL-cholesterol (mg/dL) 128.0 (29.2) 127.0 (31.1) 102.0 (20.2) 103.0 (33.8) < 0.001
Insulin (yes) 0 (0.0%) 0 (0.0%) 59 (100%) 31 (36.0%) < 0.001
Metformin (yes) 0 (0.0%) 0 (0.0%) 0 (0.0%) 68 (79.1%) < 0.001
aMED 3.38 (1.81) 3.07 (1.59) 4.36 (1.61) 4.19 (1.51) < 0.001
eGFR (mL/min/1.73 m2) 87.2 (14.9) 83.6 (18.3) 91.7 (14.3) 89.8 (19.2) 0.033

Table 2 Summary of the number of significant lipidomic features in each comparison
Comparison All subjects Women Men
T1D vs. T2D 638 (30) 374 (16) 213 (17)
T1D vs. CT 1053 (34) 527 (11) 538 (16)
T2D vs. CT 450 (15) 292 (10) 282 (10)
Number of significant features in each comparison (number of annotated significant features that fulfil the annotation criteria)

Fig. 1 Figure 1 shows the lipid classes that differ in the comparisons according to diabetes status. When comparing both diabetic conditions, lysophos-
phatidylcholines (LPC) and ceramides (Cer) were more importantly altered than other lipid classes (Fig. 1A). In a similar way, LPCs, phosphatidylcholines 
(PC), phosphatidylethanolamines (PE) and TGs were especially altered in T1D (Fig. 1B), as well as Cer in T2D (Fig. 1C). Additional File 2 (Table S3) reports 
the mass-to-charge ratio (mz) and retention time (rt) for each lipid ion significantly associated with one of these conditions in at least one of the analyses. 
Moreover, the range of corrected p-values, ionization mode and the list of analyses corresponding to the significant corrected p-value is also shown in 
Additional File 2 (Table S3)
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women only, and 10 in men only. Overall, 54 unique lipid 
species from 15 classes were determined as significant 
features across all comparisons.

UpSet plots depicting the number of unique and shared 
(i.e., intersections) significant lipidomic features in the 
different comparisons in positive and negative acquisi-
tion modes are shown in Additional File 1 (Figures S2 
and S3), respectively.

Figure  1. Manhattan plots of the minus logarithm of 
the corrected p-values (y axis) for each of the lipid classes 
(x axis) obtained in the analysis of A) T1D vs. T2D, B) 
T1D vs. CT and C) T2D vs. CT. Corrected p-values are 
shown for the features that had been annotated using 
LipidSearch and fulfilled the quality criteria described 
in the Methods section. The dashed line indicates the 
threshold of significance (0.05). AcCa, acylcarnitine; Cer, 
ceramide; ChE, cholesterol esther; Co, coenzyme; DG, 
diacylglycerol, dMePE, dimethylphosphatidylethanol-
amine; Hex1Cer, hexosylceramides; Hex2Cer, dihexo-
sylceramides; Hex3Cer, trihexosylceramides; LdMePE, 
lysodimethylphosphatidylethanolamine; LPA, Lysophos-
phatidic acid; LPC, lysophosphatidylcholine; LPE, lyso-
phosphatidylethanolamine; PC, phosphatidylcholine; PE, 
phosphatidylethanolamine; PI, phosphatidylinositol; SM, 
sphingomyelin; ST, sterol; StE, Stigmasteryl ester; TG, 
triacylglycerol; ZyE, Zymosteryl ester

In Figure  2, the fold-changes and significance level of 
the lipids significantly altered in at least one of the analy-
ses are shown.

In general, TGs, sphingomyelins (SMs), PCs, diacylg-
lycerols (DGs) and ceramide lipids were down-regulated 
in subjects with T1D, while phosphatidylethanolamines 
(PE) lysophosphatidylethanolamines (LPEs) and LPCs 
were mainly up-regulated when compared to CT. On 
the other hand, some LPCs were down-regulated in T2D 
subjects and ceramide lipids were mostly up-regulated 
with respect to controls. Results comparing T1D and 
T2D support the observed opposing effects seen in com-
parisons against the control group. A generalized oppo-
site disruption of ceramide lipids and LPCs in subjects 
with T1D and subjects with T2D could be detected. Con-
trary to LPCs, ceramide lipids were mainly upregulated 
in T2D with respect to T1D. Specifically, the ceramide 
lipids increased in T2D were 1-deoxyceramides (i.e., 
Cer(m18:1_22:0), Cer(m18:0_22:0), Cer(m18:1_23:0), 
Cer(m18:0_23:0), Cer(m18:0_24:1) and Cer(m18:0_24:0)) 
(Fig. 2).

Several sex-specific lipidomic differences were 
detected, as shown in Fig. 2. These alterations are further 
illustrated in Figs. 3 and 4 for T2D and controls compari-
son and T1D and controls comparison, respectively.

In general, our results showed that PC levels were 
higher in normoglycemic women than their male 
counterparts.

Figure  5 shows lipids significantly associated with a 
numeric variable that describes glycaemic stag, by con-
sidering the prediabetes stage. Although Co(Q10) was 
not statistically significant (q-value = 0.07), the boxplot 
shown in Fig. 5 shows a gradual decrease through the gly-
caemic progression.

Our results show a consistent alteration of ceramides, 
revealing a gradual increase of these lipids in the stage of 
prediabetes to T2D.

Discussion
Through an untargeted lipidomic serum profiling 
approach, we investigated the lipidomic alterations in 
type 1 and type 2 diabetes; the sex-specific differences 
in these diseases and the glycaemic state by considering 
the prediabetes stage. The results reported in the present 
study have revealed 54 lipid species belonging to 15 dif-
ferent lipid classes potentially implicated in well-known 
mechanisms involved in type 1 and type 2 diabetes.

Lysophosphatidylcholine acyltransferase (LCAT) activity
Our results have revealed a panel of LPCs significantly 
increased in T1D, specifically LPC(26:0), LPC(20:1), 
LPC(18:1) and LPC(18:2). These findings are in agree-
ment with other studies, where LPC(18:3) has been 
consistently found to be positively associated with T1D 
or in those at risk [7]. The mechanisms behind this 
increase are unclear; however, SMs have been described 
as inhibitors of LCAT, enzyme responsible of LPCs and 
cholesteryl esters synthesis from PCs [35]. In our study, 
SM(d18:2_22:2) was significantly reduced in T1D sub-
jects, which could be a potential explanation for an 
enhanced activity of LCAT and a subsequent increase of 
LPC levels. Furthermore, we observed a general decrease 
of a set of PC species in subjects with T1D. This aligns 
with some studies that showed a negative association 
between PC levels and T1D risk [36, 37], and concurs 
with the suspected enhancement of LCAT activity. The 
potential consequences of these changes should also be 
considered. Serum levels of LPC(18:1) and LPC(18:2) 
were found to be significantly higher in children with 
T1D after a diabetes ketoacidosis or a hypoglycaemic epi-
sode [38], suggesting an association between certain dia-
betes complications and LPCs.

Although non-significant, our results showed a reduc-
tion of LPC levels in T2D compared to controls, and a 
significant reduction of LPC(20:1) and LPC(18:2) when 
compared to subjects with T1D. Moreover, PC(18:0_22:5) 
and PC(18:0_20:3) were significantly increased in sub-
jects with T2D versus controls. Our results are aligned 
with other studies that showed a positive association 
between PCs and T2D risk [39], and suggested a reduc-
tion of LCAT activity in T2D [40, 41] and a negative cor-
relation between LCAT activity and HbA1c [40–42]. A 
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potential mechanism behind this relationship is the non-
enzymatic glycation of apolipoprotein A-I in HDL par-
ticles due to hyperglycemia [40, 42].

Polyunsaturated fatty acids (PUFAs)
Our findings also showed a general down-regulation 
of TG and DG containing PUFAs in subjects with T1D 
when compared to controls and subjects with T2D. The 
decrease of oleic (16:1) and palmitoleic (18:1) acids, 
as well as a reduction in the synthesis of omega-6 and 
omega-3 PUFAs in T1D has been previously described. 
This reduction is caused by decreased activity of Δ6 

desaturase and the stearoyl-CoA desaturases (SCD). 
mRNA transcription of these desaturases is activated by 
the protein SREBP-1c, the expression and activation of 
which is modulated by insulin and therefore, reduced in 
T1D [43]. This mechanism could be an explanation for 
the significant reduction of PUFA-containing TGs and 
DGs in subjects with T1D. This becomes even more fea-
sible if we consider that all the TGs and DGs found to be 
significantly reduced in our study, contain at least one of 
the previously mentioned fatty acids (16:1, 18:2, 18:3 and 
20:5).

Fig. 2 Fold-change values and statistical significance obtained for each lipid determined as being significantly different in at least one of the nine analy-
ses conducted. Statistical significance is indicated using asterisks: corrected p-value (p) < 0.05 (*), p < 0.01 (**), p < 0.001 (***), p < 0.0001 (****). Bars in the 
right side of each panel indicate a positive fold-change value, while bars in the left indicate a negative one. A positive fold-change indicates that the lipid 
is increased in the first group (e.g. in T1D vs. T2D, TG(18:1_18:1_18:2) is significantly increased in T1D with respect to T2D). The different colours in the back-
ground of the plot show the different lipid classes. In the left, the names of the lipid subspecies are shown. The nomenclatures of the type 16:1e indicate 
that the fatty acid (FA) of the glycerophospholipid is linked to the glycerol moiety by an ether bond, therefore, the mentioned glycerophospholipid is an 
ether-glycerophospholipid
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Ether lipids
Peroxisomal defects causing decreased levels of serum 
ether lipids have been associated with neurodegenera-
tive diseases, cancer, obesity, hypertension [44] and T2D 
[45]. Plasmalogen PEs containing PUFA have been asso-
ciated with lower risk of T2D [46]. However, in the pres-
ent study, PE(20:0p_18:2) was significantly increased in 
subjects with T1D and T2D when compared to controls, 
and PE(16:0p_18:1) and PE(16:1e_18:1) were significantly 
increased in subjects with T1D. On the other hand, pre-
vious studies have revealed reduced levels of ether PCs 
in lean subjects with T2D [45] and in HDL particles of 
subjects with T2D [9], as well as inverse associations 
between ether PCs and T2D risk [39]. Moreover, ether 
PCs have been positively associated with longevity [47]. 
Although our results do not show a significant asso-
ciation between ether PCs and diabetes, we have found 
lower levels of ether LPCs (LPC(18:1e) and LPC(18:2e)) 
in subjects with T2D, supporting the previously hypoth-
esized peroxisomal defect associated with T2D.

Phosphatidylethanolamines and 
Lysophosphatidylethanolamines
Regarding phosphatidylethanolamines (PEs), we showed 
an increase of PE(18:0_20:3) and PE(16:0_18:2) in sub-
jects with T2D. Previous work has reported increased 
serum levels of PEs in T2D obese subjects. The mecha-
nism proposed to explain this alteration was a higher 
abundance of PEs in VLDL particles compared to HDL 
particles, and a relative increase of VLDL particles in 
obese T2D subjects [45]. Furthermore, another study 
showed enrichment of PE(38:5), PE(38:6), and PE(40:7) 
in HDL particles in patients with T2D and CHD [9]. This 

could explain the increase in PEs observed in the pres-
ent study, since the lipid species observed in lipidomics 
mainly stem from circulant lipoproteins. Additionally, 
PEs have been described as modulators of inflammation 
and apoptosis [47]. In line with this, our results revealed 
two PE species, PE(18:0_18:1) and PE(18:1_18:2), signifi-
cantly increased in subjects with T1D, and interestingly 
one of their metabolic products LPE(18:1) also increased 
in T1D. On the other hand, PE(18:0_22:6) was signifi-
cantly decreased in subjects with T1D, as well as one of 
its plausible products, LPE(22:6).

Sphingolipids
The direct inhibition of the insulin-signalling path-
way caused by sphingolipids has been widely described. 
Ceramides accumulation interferes in the insulin-stim-
ulated activation of protein kinase B (Akt/PKB), which 
decreases glucose uptake in skeletal muscles and acti-
vates gluconeogenesis and glycogenolysis in the liver. On 
the other hand, several studies support the theory that 
elevated intracellular levels of sphingolipids may hin-
der mitochondrial respiratory chain activity, thus caus-
ing alterations in mitochondrial metabolism [48]. Our 
results revealed an increase of a set of 1-deoxyceramides, 
Cer(m18:1_22:0), Cer(m18:0_22:0), Cer(m18:1_23:0), 
Cer(m18:0_23:0), Cer(m18:0_24:1), Cer(m18:0_24:0), in 
subjects with T2D compared to subjects with T1D and 
controls. Moreover, this significant association is main-
tained when comparing normoglycemia, prediabetes 
and T2D, showing a gradual increase with the glycaemic 
state. Related to this, it is quite relevant that we found 
coenzyme Q10, Co(Q10), to be significantly decreased in 
subjects with T2D compared to controls. Co(Q10) has a 

Fig. 3 Boxplots of lipids that are significantly associated with T2D in men or women. The nomenclatures of the type 16:1e indicate that the fatty acid (FA) of 
the glycerophospholipid is linked to the glycerol moiety by an ether bond, therefore, the mentioned glycerophospholipid is an ether-glycerophospholipid
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key role in the electron transport chain of the mitochon-
dria and its deficiency in subjects with T2D has been 
previously described [49]. This concurs with our results 
and is probably related to the above-mentioned mito-
chondrial dysfunction. Even though this molecule has 
not been found significantly associated in the prediabetes 
analysis (q-value = 0.07), the corrected p-value is close to 
significance. The plot of its progression has been added 
to the main manuscript, and it is possible to see a non-
linear gradual decrease from normoglycemia to T2D.

Sex-specific metabolic changes in type 1 and type 2 
diabetes
It has been shown that women have a steeper age-related 
increase of ceramide levels [50]. The loss of oestrogens 
during and after menopause has been proposed as the 
main mechanism behind this pattern [50, 51], but other 

processes have been proposed, such as the differences in 
sex steroids or the higher levels of oxidative stress in post-
menopausal women [51]. Moreover, pre-menopausal 
women have better cardiovascular health and CVD out-
comes than men, but this tendency changes during and 
after menopause. Ceramides might have a key role in this 
process, due to the strong relationship between oestro-
gens and sphingolipid metabolism and the association of 
ceramides with apoptosis, oxidative stress, inflammation 
and endothelial dysfunction [52]. Further, menopause 
has been associated with an increased risk of T2D [53]. 
In our study, the age of the female subgroup with T2D 
was 57.3 (SD: 10.6) years. Therefore, we might assume 
that in a large proportion of the subjects, menopause 
was playing a role in the lipidomic differences observed. 
We found one 1-deoxyceramide, Cer(m18:1_20:0), sig-
nificantly associated with T2D in women but not in men, 

Fig. 4 Boxplots of 20 selected lipids significantly associated with T1D in men or women
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and in general, the fold-changes and the significance level 
of the significant 1-deoxyceramides in T2D were higher 
in women than in men (Fig. 2). Diabetes has been shown 
to attenuate the protective effect of the female sex in the 
development of cardiac diseases and nephropathy [54]. 
The specific lipids that differ between sexes found in the 
present study could explain the greater impact of T2D 
complications in post-menopausal women.

Our results also revealed a greater T1D-associated 
alteration of ceramide metabolism in men, specifically, 
Cer(d18:1_20:0) and Cer(d18:1_18:0) were significantly 

decreased only in men. Reduced levels of very long chain 
ceramide species have been associated with the devel-
opment of macroalbuminuria [55], while male sex has 
been reported as a risk factor for the development of 
macroalbuminuria associated with T1D [56]. Moreover, 
we revealed a panel of LPCs significantly increased only 
in men. It has been shown that LPA and LPCs accumu-
late in the kidney and promote renal inflammation and 
tubulo-interstitial fibrosis in diabetic rodent models. Six 
species of LPAs and LPCs were found to be significantly 
enriched in the urine, but not in plasma, of people with 

Fig. 5 Boxplots of lipids significantly associated with the numeric variable defined as 0 for normoglycemia, 1 for prediabetes and 2 for T2D
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T2D with nephropathy [57]. The mentioned sex-related 
lipidic differences could help to explain the worse prog-
nosis of T1D-related diabetic nephropathy in men com-
pared to women.

Strengths and limitations
Our study has several strengths, such as the large number 
of covariables used in our linear models to minimize con-
founding, the untargeted approach that allows for a more 
comprehensive characterisation of the lipidome in people 
with diabetes, and the consideration of sex-specific lipid 
differences associated with diabetes. There are also some 
limitations. First, our findings have not been validated in 
an independent cohort, and secondly, the observational 
nature of our study does not allow us to make causal 
inference. Therefore, further research is required to 
assess diabetes progression and its complications. Inter-
estingly, our study shows the need to investigate this mat-
ter in a sex-specific manner.

Conclusions
In conclusion, we detected a panel of lipids associ-
ated with T1D and T2D, sex-specific differences in lipid 
metabolism disruption associated with diabetes and lip-
ids associated with the glycaemic state, by considering 
the prediabetes stage. A large part of the lipids reported 
in this study have previously been linked to T1D, T2D 
and/or their complications in the literature, thus con-
firming their role in diabetes. Regarding sex-specific 
differences, we reported several lipid species associ-
ated with T2D only in women that have been previ-
ously related to menopause. This could help explain an 
unfavourable prognosis of T2D in women of older age 
compared to their male counterparts. In a similar way, 
we have shown a set of lipids associated with T1D only 
in men that have been previously linked to diabetic 
nephropathy, potentially explaining the worse progno-
sis of diabetic nephropathy in men. Our findings point 
to the need of establishing sex-specific strategies in the 
management and research on diabetes mellitus and its 
associated comorbidities and suggest the importance of 
lipidomics in advancing personalized medicine.
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