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Abstract
Background: Epidemiological studies have revealed a relationship between early growth
restriction and the subsequent development of insulin resistance and type 2 diabetes. Ligation of
the uterine arteries in rats mimics uteroplacental insufficiency and serves as a model of intrauterine
growth restriction (IUGR) and subsequent developmental programming of impaired glucose
tolerance, hyperinsulinemia and adiposity in the offspring. The objective of this study was to
investigate the effects of uterine artery ligation on the skeletal muscle expression of insulin
receptor and key enzymes of LCFA metabolism.

Methods: Bilateral uterine artery ligation was performed on day 19 of gestation in Sprague-Dawley
pregnant rats. Muscle of the posterior limb was dissected at birth and processed by real-time RT-
PCR to analyze the expression of insulin receptor, ACCα, ACCβ (acetyl-CoA carboxylase alpha
and beta subunits), ACS (acyl-CoA synthase), AMPK (AMP-activated protein kinase, alpha2
catalytic subunit), CPT1B (carnitine palmitoyltransferase-1 beta subunit), MCD (malonyl-CoA
decarboxylase) in 14 sham and 8 IUGR pups.

Muscle tissue was treated with lysis buffer and Western immunoblotting was performed to assay
the protein content of insulin receptor and ACC.

Results: A significant down regulation of insulin receptor protein (p < 0.05) and reduced
expression of ACS and ACCα mRNA (p < 0.05) were observed in skeletal muscle of IUGR
newborns. Immunoblotting showed no significant change in ACCα content.

Conclusion: Our data suggest that uteroplacental insufficiency may affect skeletal muscle
metabolism down regulating insulin receptor and reducing the expression of key enzymes involved
in LCFA formation and oxidation.

Background
Uteroplacental insufficiency resulting in fetal growth
retardation is a common complication of pregnancy and

a significant cause of perinatal morbidity and mortality.
Epidemiologic studies in humans have shown that
impaired intrauterine growth is associated with an
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increased incidence of insulin resistance, type 2 diabetes,
and cardiovascular disease in the adult [1-6]. These obser-
vations have led to the hypothesis that metabolic and car-
diovascular disease in adulthood arises in utero, in part, as
a result of changes in the development of key endocrine
and metabolic pathways during suboptimal intrauterine
conditions associated with impaired fetal growth. This
hypothesis has been tested experimentally in a number of
species, using a range of techniques to impair fetal growth.
Inducing intrauterine growth retardation (IUGR) by pla-
cental insufficiency or by undernutrition, stress, or hor-
mone treatment of the mother leads to endocrine and
metabolic alterations in the adult offspring in several spe-
cies [7]. However, the mechanisms by which an abnormal
uterine milieu leads to the development of diabetes in
adulthood are not known. To investigate potential seque-
lae of IUGR and the underlying mechanisms, ligation of
the uterine arteries in rats has been used as an animal
model of uteroplacental insufficiency leading to growth
retarded fetuses with a metabolic profile very similar to
that of IUGR human fetuses [8,9]. We have recently
shown that uteroplacental insufficiency, obtained by uter-
ine artery ligation, which leads to IUGR pups, affects the
expression of specific hypothalamic lipid sensing genes
such as the CPT1 isoform C, and acetyl-CoA carboxylase
(ACC) isoforms alpha and beta [10].

Insulin resistance and type 2 diabetes are characterized by
hyperglycemia with hyperinsulinemia, a reduced ability
to oxidize fat, and an accumulation of fat within skeletal
muscle [11,12]. This increase in muscle fat content is
highly associated with insulin resistance [13,14].
Recently, perturbed skeletal muscle insulin signaling has
been reported in adult growth restricted rats [15].

In this study we focused on the hypothesis that uteropla-
cental insufficiency may affect skeletal muscle metabolic
pathways altering the expression of insulin receptor and
of key enzymes of intramuscular lipid metabolism.

Methods
Animal model
Time-dated Sprague-Dawley pregnant rats (Harlan
Sprague Dawley, Inc.) were individually housed under
standard conditions and allowed free access to standard
chow and water. On day 19 of gestation (term is 22 days)
the maternal rats were anesthetized with intramuscular
injections of xylazine (8 mg/Kg) and ketamime (40 mg/
kg) (Sigma-Aldrich, St. Louis, MO), and the abdomen was
opened along the midline. Suture was placed around both
uterine arteries, then either tied or withdrawn before clos-
ing the abdomen [8,9]. Dams recovered quickly from
uterine artery ligation (n = 4) and sham procedures (n =
4), and resumed feeding the same day. After recovery, rats
had ad libitum access to food and water. The pregnant rats

were allowed to deliver spontaneously and at birth pups
were weighted and killed by cervical dislocation. Posterior
limb skeletal muscle tissue was immediately harvested
and frozen in liquid nitrogen and stored at -80°C. 14
sham and 8 IUGR rats from different litters were tested. All
procedures complied with Italian regulations for labora-
tory animal care, according to the guidelines and under
supervision of the Animal Technology Station, Interde-
partmental Service Center, Tor Vergata University, Rome,
Italy.

Plasma assays
At birth, 14 SHAM and 8 IUGR pups were decapitated,
blood was collected and centrifuged at 1900 × g at 4°C for
10 min, and plasma was stored at -80°C. Glucose and
insulin concentrations were measured.

Glucose was determined using a colorimetric commercial
kit (SigmaChemical Co.). Plasma insulin concentrations
were measured in duplicate by a rat/mouse insulin ELISA
kit, using rat insulin as the standard (Linco Research, St.
Charles, MO) according to the manufacturer's instruc-
tions. The intraassay CV was 1.2–8.4%, the interassay CV
was 6.0–17.9%, and the sensitivity limit was 0.2 ng/mL.

RNA isolation and cDNA synthesis
Total RNA was extracted using TriPure (Roche Applied Sci-
ence) according to the manufacturer's instructions and
quantified in duplicate using ultraviolet absorbance at
260 nm. Gel electrophoresis confirmed the integrity of the
samples. 1 μg RNA, pretreated with RNase free DNase
(Invitrogen Co.) was transcribed into the complementary
DNA using the High-Capacity cDNA Archive Kit (Applied
Biosystems) in a final volume of 50 μl following the man-
ufacturer's protocol. To minimize variation in the reverse
transcription reaction, all RNA samples from a single
experimental setup were reverse transcribed simultane-
ously.

Real-time RT-PCR
We explored the expression of key enzymes that regulate
fatty acid metabolism in the muscle. Real-time RT-PCR
was performed on an ABI PRISM 7300 Sequencer Detector
(Applied Biosystems). PCR primers and TaqMan probes
to amplify and detect ACCα, ACCβ, ACS, AMPK, CPT1B,
MCD, Insulin receptor and the housekeeping gene 18S
were commercially available as inventoried assay (Assay-
on-demand Gene Expression Product; Applied Biosys-
tems).

Prior to performing real-time PCR, primer and probe con-
centrations were determined to demonstrate their specifi-
city and optimal reaction condition. 18S was used as an
internal control for differences in cDNA loading. Before
the use of 18S as a control, parallel serial dilution of cDNA
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were quantified to prove the validity of using 18S as an
internal control.

The real-time RT-PCR amplification was performed in
skeletal muscle tissues from fourteen SHAM and eight
IUGR rats. Experiments were performed in triplicate using
96-well tray and optical adhesive covers (Applied Biosys-
tems) in a final reaction mixture of 20 μl containing 3 μl
of undiluted cDNA. Real-time PCR was performed using
Platinum Quantitative PCR SuperMix-UDG with ROX
(Invitrogen Co.). The cycling consisted of 2 min at 50°C,
2 min at 95°C followed by 40 cycles of 95°C for 15 sec
and 60°C for 45 sec. Determination of reaction efficiency
was routinely used as an internal quality control for ade-
quate assay performance. Crossing of threshold (Ct) val-
ues obtained for the target gene were normalized against
each individual 18S value which was run in the same well
of the real time RT-PCR run. Relative quantification of
PCR products was performed using Relative Quantifica-
tion Study software (Applied Biosystems). Results are
expressed in raw relative quantification (RQ) ± standard
errorrs.

Western immunoblotting
Tissues were homogenized in ice with lysis buffer (50 mM
Hepes pH 7.4, 150 mM NaCl, 10 mM NaF, 1 mM Na3VO4,
10% glycerol, 0.5% Triton ×-100, 5 mM EDTA, 10 μl/ml
cocktail protease inhibitors). Lysates were clarified by cen-
trifugation at 13,000 g (30 minutes, 4°C), and protein
concentration in the supernatant were determined by the
Bradford assay (Bio-Rad Laboratories, CA, USA) using
bovine serum albumin as a standard. Eighty micrograms
of the extracted proteins were separated by SDS-PAGE on
3–8% Tricine gel (Bio-Rad Laboratories, CA, USA) and
blotted onto ECL nitrocellulose membrane (Amersham
Biosciences UK, Ltd., Little Chalfont, Buckinghamshire,
UK). The filter was blocked with 5% non-fat dry milk in
TBS-0.1% Tween 20 and then incubated with ACC rabbit
polyclonal antibody (Cell Signaling Technology Inc. Dan-
vers, MA) and insulin-Rβ rabbit polyclonal antibody
(Santa Cruz). After several washes in PBS-0.1% Tween 20,
horseradish peroxidase-conjugated secondary antibody
(1:5,000) (Amersham) was added for 1 hour at RT. The
labelled bands were detected using Amersham ECL west-
ern blotting system according to manufacturer's specifica-
tions. After protein detection, membranes were stripped
with Restore Western Blot Stripping Buffer (Pierce, Rock-
ford IL) and re-blotted with rabbit HRP-conjugated actin
antibody (1:1000) (Santa Cruz). Densitometry analysis of
bands was performed using a Image Quant 5 software
(Molecular Dynamics).

Statistical analysis
Statistical analysis was performed using Sigma Plot for
Windows Version 13.0 (SPSS, Inc, Chicago, IL, USA). Dif-

ferences in gene expression between sham and IUGR rats
were analyzed with one-way ANOVA. Differences
between means from plasma assays and densitometric
analyses were assessed by unpaired two-tailed t test. Dif-
ferences were considered statistically significant at p <
0.05.

Results
Animal weights and metabolic profile
Birth weights of IUGR animals were significantly lower
than those of controls (SHAM) (mean weight ± SD: 4.0 ±
0.57 versus 6.5 ± 0.32 g, p < 0.001). No significant differ-
ences were observed in blood glucose (63.9 ± 13 vs 62.9 ±
21.5 mg/dL) and insulin (0.34 ± 0.15 vs 0.36 ± 0.16 ng/
mL) levels.

Insulin Receptor
Although a tendency toward a decrease of insulin receptor
mRNA expression was noted (20% less), these changes
did not achieve statistical significance (Figure 1).

Immunoblot analysis indicated a significant down regula-
tion of insulin receptor in skeletal muscle of IUGR ani-
mals when compared with SHAM (control) (p < 0.05,
Figure 2).

Expression of LCFA metabolism regulatory enzymes
LCFAs act as nutrient abundance signals in the muscle.
The expression of key enzymes that regulate muscle LCFA
metabolism was assessed. The expression of ACCα and
ACS mRNA levels was significantly reduced (by 54% and
66% respectively, p < 0.05) in skeletal muscle of IUGR rats
at birth (Figure 3), whereas no significant differences in

Insulin receptor mRNA expression in skeletal muscle of SHAM (n = 14) and IUGR rats (n = 8)Figure 1
Insulin receptor mRNA expression in skeletal muscle 
of SHAM (n = 14) and IUGR rats (n = 8). Transcripts 
were measured by real-time RT-PCR using appropriate prim-
ers and normalized to 18S mRNA. Data are expressed as rel-
ative quantification vs. SHAM group (RQ = 1). Bars represent 
standard errors.
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the expression of ACCβ, AMPK, and MCD were observed.
Expression of muscle specific CPT1B was measured by
quantitative RT-PCR but no significant difference between
IUGR and SHAM pups was found.

ACCα immunoblotting analysis showed no differences
between IUGR and SHAM animals thus suggesting a post-
transcriptional regulation (Figure 4). ACS immunoblot-
ting analysis couldn't be performed for unavailability of
the specific antibodies.

Discussion
Uteroplacental insufficiency limits availability of sub-
strates to the fetus and retards growth during gestation,
ultimately leading to IUGR. Alterations in the intrauterine
milieu have a profound impact on glucose homeostasis in
the offspring, culminating in the development of insulin
resistance, glucose intolerance and type 2 diabetes in
adulthood.

The etiology of insulin resistance within skeletal muscle in
the human with type 2 diabetes is multifactorial, involv-
ing impairments in hormonal signaling, enzyme and
transporter activity, and substrate availability. Previous
studies also implicated decreased oxidative capacities of
skeletal muscle of human diabetics as contributory to
insulin resistance [16].

To investigate the effects of uteroplacental insufficiency
on the expression of insulin receptor in muscle, we stud-
ied an animal model of intrauterine growth retardation
obtained by bilateral uterine artery ligation. In this model,

the resulting uteroplacental insufficiency leads to growth
retarded fetuses with a metabolic profile very similar to
that of IUGR human fetuses [8,9]. These animals exhibit
impaired oxidative phosphorylation in skeletal muscle
[17], mild peripheral insulin resistance and β-cell secre-
tory defects very early in life but have adequate compen-
satory insulin secretion for several weeks [18]. However,
eventually, β-cell compensation fails, and overt diabetes
occurs at age 3–6 months [9]. More recently, it has been
described in the same animal model that ligated offspring
showed impaired glucose tolerance from the age of 15
weeks as well as elevated glycosylated hemoglobin and
corticosterone levels [19].

Our data show for the first time reduced protein levels of
insulin receptor in skeletal muscle of IUGR animals. The
lack of statistical significance in insulin receptor mRNA
expression is probably due to the relative low number of
examined samples. Most of previous studies focused on
downstream effectors of insulin actions in peripheral tis-
sues without determining insulin receptor expression. In
rat model, Ozanne et al. [20] showed that maternal pro-
tein restriction leads to muscle insulin resistance. Soleus
muscle from growth restricted offspring had similar basal
glucose uptakes compared with the control group, but
whilst insulin stimulated glucose uptake into control
muscle, it had no effect on growth restricted offspring

Expression of acetyl-CoA carboxylase isoenzyme alpha (ACCα) and beta (ACC β), acyl-CoA synthase (ACS), AMP-activated protein kinase (AMPK), carnitine palmitoyltrans-ferase-1 isoenzyme B (CPT1B), malonyl-CoA decarboxylase (MCD), in IUGR rat skeletal muscleFigure 3
Expression of acetyl-CoA carboxylase isoenzyme 
alpha (ACCα) and beta (ACC β), acyl-CoA synthase 
(ACS), AMP-activated protein kinase (AMPK), carni-
tine palmitoyltransferase-1 isoenzyme B (CPT1B), 
malonyl-CoA decarboxylase (MCD), in IUGR rat 
skeletal muscle. Transcripts were measured by real-time 
RT-PCR using appropriate primers and normalized to 18S 
mRNA. Data are expressed as relative quantification vs. 
SHAM group (RQ = 1). Bars represent standard errors. *P < 
0.05.

Insulin receptor beta subunit protein expression in skeletal muscle of SHAM (n = 14) and IUGR rats (n = 8) on day 0Figure 2
Insulin receptor beta subunit protein expression in 
skeletal muscle of SHAM (n = 14) and IUGR rats (n = 
8) on day 0. A, Western immunoblotting analysis; B, densit-
ometric analysis.*P < 0.05.
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muscle. This impaired insulin action was not related to
changes in expression of either the insulin receptor or glu-
cose transporter 4 (GLUT4). However, growth restricted
offspring muscle expressed significantly less of the zeta
isoform of protein kinase C (PKC ζ) compared with con-
trols. This PKC isoform has been shown to be positively
involved in GLUT4-mediated glucose transport. We have
used a different model of intrauterine growth restriction
based upon uterine artery ligation in which blood flow to
the fetus is not ablated but reduced to a similar degree to
that observed in human pregnancies complicated by uter-
oplacental insufficiency. Furthermore, whilst Ozanne et
al. [20] studied 15-month-old animals, we investigated
rats at birth. The use of only hind limb skeletal muscle
might represent a limiting factor since an important dif-
ference between type 1 (slow) and type 2 (fast) fibers
could exist. However, at birth it is practically impossible
to select muscle fibers.

In humans, Jaquet et al. [21] demonstrated that insulin
resistance is associated with an impaired regulation of
GLUT4 gene expression by insulin in IUGR-born subjects
in both skeletal muscle and adipose tissue.

Impairment of muscle fat metabolism is highly associated
with insulin resistance. Our study shows for the first time
that uteroplacental insufficiency leads to reduced ACS and
ACCα mRNA expression in skeletal muscle at birth. In
intramuscular lipid metabolism, ACS is the key enzyme
for converting free fatty acids into LCFA-CoA. ACC cata-
lyzes the formation of malonyl-CoA, an essential sub-

strate for fatty acid synthesis in lipogenic tissues and a key
regulatory molecule in muscle, brain, and other tissues
[22]. Three CPT1 isoforms with various tissue distribu-
tions and encoded by distinct genes have been identified:
liver (CPT1A) [23], muscle (CPT1B) [24], and brain
(CPT1C) [25] Cellular levels of malonyl-CoA repress
CPT1 activity and decrease LCFA-CoAs oxidation. There-
fore, the final effect of reduced expression of both ACS
and ACCα would be the decrease of intramuscular LCFAs.
This finding is consistent with our recent study in hypoth-
alamus of IUGR rats, showing significant decreased ACCα
and ACCβ expression at birth [10]. Taken together these
findings suggest that intrauterine programming may affect
key enzymes of lipid metabolism at multiple levels. In
muscle, however, ACCα protein content was not affected
thus suggesting post-transcriptional regulation.

Lipids are implicated in the development of insulin resist-
ance in skeletal muscle. This seems to be linked to an
imbalance between lipid supply and lipid oxidation, the
latter being related to decreased mitochondrial oxidative
capacity in states of insulin resistance [26]. In humans, it
has been described that during physiological hyperglyc-
emia with hyperinsulinemia and maintained FFA concen-
trations (i.e., a condition that mimics the insulin-resistant
state), human skeletal muscle malonyl-CoA concentra-
tions are significantly increased and are directly associated
with a reduction in LCFA oxidation and functional CPT-1
activity [27].

As LCFA oxidative capacity in mitochondria is low in sub-
jects with insulin resistance [20,28-32], mitochondrial
dysfunction and thereby decreased lipid oxidation has
been considered to play a key role in the development of
insulin resistance. Lane et al. reported an increase in trig-
lyceride levels in IUGR rats [33] Accordingly, a connection
between mitochondrial dysfunction, increased intramus-
cular triacylglycerol levels, and insulin resistance has been
described in insulin-resistant offspring of patients with
type 2 diabetes [34].

LCFAs may influence glucose metabolism by multiple
mechanisms. LCFAs inhibit hexokinase activity [35] thus
reducing glucose metabolism. They are also a substrate for
the synthesis of ceramide which is increased in muscle of
insulin-resistant rats [36]. LCFAs may interfere with insu-
lin signaling by activating protein kinase C. PKC in turn
inhibits insulin signaling by phosphorylation of the ser-
ine residues on the insulin receptor [37,38] and insulin
receptor substrate-1 (IRS-1) [39], thus inhibiting the tyro-
sine phosphorylation of IRS-1. Patients with type 2 diabe-
tes have increased PKC protein levels in the rectus
abdominal muscle [40] and decreased muscle insulin
receptor tyrosine kinase activity, which could be restored
by phosphatase treatment in vitro, possibly suggesting

Acetyl-CoA carboxylase isoenzyme alpha (ACCα) protein expression in skeletal muscle of SHAM (n = 14) and IUGR rats (n = 8) on day 0Figure 4
Acetyl-CoA carboxylase isoenzyme alpha (ACCα) 
protein expression in skeletal muscle of SHAM (n = 
14) and IUGR rats (n = 8) on day 0. A, western immuno-
blotting analysis; B, densitometric analysis.
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increased serine phosphorylation of the insulin receptor
due to increased PKC activity [37].

We speculate that intrauterine limited supply of substrates
secondary to uteroplacental insufficiency may lead to
down regulation of insulin receptor in skeletal muscle. We
hypothesize that reduced intramuscular content of LCFAs
secondary to reduced expression of both ACS and ACC
may represent a transient compensatory mechanism to
counteract insulin resistance during early postnatal life.

Conclusion
Uteroplacental insufficiency may affect skeletal muscle
metabolism down regulating insulin receptor and reduc-
ing the expression of key enzymes involved in LCFA for-
mation and oxidation. We speculate that decreased
intramuscular lipid accumulation may represent a tran-
sient compensatory mechanism to counteract insulin
resistance.

Abbreviations
ACC: acetyl-CoA carboxylase; ACS: acyl-CoA synthase;
AMPK: AMP-activated protein kinase; CPT1: carnitine
palmitoyltransferase-1; IUGR: intrauterine growth retar-
dation; LCFA: long-chain fatty acid; MCD: malonyl-CoA
decarboxylase.

Competing interests
The authors declare that they have no competing interests.

Authors' contributions
DG: participated in the design of the study, carried out the
experiments, performed statistical analysis and reviewed
the manuscript. AP: carried out the experiments and
reviewed the manuscript. SC: conceived the study, super-
vised the project and drafted the manuscript. He is the cor-
responding Author of the paper. All Authors read and
approved the final manuscript.

References
1. Barker DJ, Winter PD, Osmond C, Margetts B, Simmonds SJ:

Weight in infancy and death from ischaemic heart disease.
Lancet 1989, 2:577-580.

2. Barker DJ, Osmond C, Golding J, Kuh D, Wadsworth ME: Growth
in utero, blood pressure in childhood and adult life, and mor-
tality from cardiovascular disease.  BMJ 1989, 298:564-567.

3. Barker DJ, Hales CN, Fall CH, Osmond C, Phipps K, Clark PM: Type
2 (non-insulin-dependent) diabetes mellitus, hypertension
and hyperlipidemia (syndrome X): relation to reduced fetal
growth.  Diabetologia 1993, 36:62-67.

4. Barker DJ: Fetal origins of coronary heart disease.  BMJ 1995,
311:171-174.

5. Eriksson JG, Forsen T, Tuomilehto J, Osmond C, Barker DJ: Early
growth and coronary heart disease in later life: a longitudinal
study.  Br Med J 2001, 322:949-953.

6. Geremia C, Cianfarani S: Insulin sensitivity in children born
small for gestational age (SGA).  Rev Diabet Stud 2004, 1:58-65.

7. Fowden AL, Giussani DA, Forhead AJ: Endocrine and metabolic
programming during intrauterine development.  Early Hum
Dev 2005, 81:723-734.

8. Unterman T, Lascon R, Gotway M, Oehler D, Gounis A, Simmons RA,
Ogata ES: Circulating levels of insulin-like growth factor bind-
ing protein-1 (IGFBP-1) and hepatic mRNA are increased in
the small for gestational age fetal rat.  Endocrinology 1990,
127:2035-2037.

9. Simmons RA, Templeton LJ, Gertz SJ: Intrauterine growth retar-
dation leads to the development of type 2 diabetes in rat.
Diabetes 2001, 50:2279-2286.

10. Puglianiello A, Germani D, Antignani S, Scalia Tomba G, Cianfarani S:
Changes in the expression of hypothalamic lipid sensing
genes in rat model of intrauterine growth retardation
(IUGR).  Pediatr Res 2007, 61:433-437.

11. Kelley DE, Mandarino LJ: Hyperglycemia normalizes insulin
stimulated skeletal muscle glucose oxidation and storage in
non insulin dependent diabetes mellitus.  J Clin Invest 1990,
86:1999-2007.

12. Mandarino LJ, Consoli A, Kelley DE: Effects of obesity and
NIDDM on glucose and insulin regulation of substrate oxida-
tion in skeletal muscle.  Am J Physiol 1996, 270:E463-E470.

13. Kelley DE, Goodpaster BH: Skeletal muscle triglyceride. An
aspect of regional adiposity and insulin resistance.  Diabetes
Care 2001, 24:933-941.

14. Pan DA, Lillioja S, Kriketos AD, Milner MR, Baur LA, Bogardus C,
Jenkins AB, Storlien LH: Skeletal muscle triglyceride levels are
inversely related to insulin action.  Diabetes 1997, 46:983-988.

15. Oak SA, Tran C, Pan G, Tramotharan M, Devaskar SU: Perturbed
skeletal muscle insulin signaling in the adult female intrau-
terine growth-restricted rat.  Am J Physiol Endocrinol Metab 2006,
290:E1321-E1330.

16. Simoneau J-A, Kelley DE: Altered glycolytic and oxidative
capacities of skeletal muscle contribute to insulin resistance
in NIDDM.  J Appl Physiol 1997, 83:166-171.

17. Lane RH, Maclennan NK, Daood MJ, Hsu JL, Janke SM, Pham TD, Puri
AR, Watchko JF: IUGR alters postnatal rat skeletal muscle per-
oxisome proliferator-activated receptor-γ coactivator-1
gene expression in a fiber specific manner.  Pediatr Res 2003,
53:994-1000.

18. Selak MA, Storey BT, Peterside I, Simmons RA: Impaired oxidative
phosphorylation in skeletal muscle of intrauterine growth-
retarded rats.  Am J Physiol Endocrinol Metab 2003, 285:E130-E137.

19. Nusken K-D, Dotsch J, Rauh M, Rascher W, Schneider H: Uteropla-
cental insufficiency after bilateral uterine artery ligation in
the rat: impact on postnatal glucose and lipid metabolism
and evidence for metabolic programming of the offspring by
sham operation.  Endocrinology .

20. Ozanne SE, Olsen GS, Hansen LL, Tingey KJ, Nave BT, Wang CL, Har-
til K, Petry CJ, Buckley AJ, Mosthaf-Seedorf L: Early growth restric-
tion leads to down regulation of protein kinase C zeta and
insulin resistance in skeletal muscle.  J Endocrinol 2003,
177:235-241.

21. Jaquet D, Vidal H, Hankard R, Czernichow P, Levy-Marchal C:
Impaired regulation of glucose transporter 4 gene expres-
sion in insulin resistance associated with in utero malnutri-
tion.  J Clin Endocrinol Metab 2001, 86:3266-3271.

22. Brownsey RW, Boone AN, Elliott JE, Kulpa JE, Lee WM: Regulation
of acetyl-CoA carboxylase.  Biochem Soc Trans 2006, 34:223-227.

23. Britton CH, Schulz RA, Zhang B, Esser V, Foster DW, McGarry JD:
Human liver mitochondrial carnitine palmitoyltransferase I:
characterization of its cDNA and chromosomal localization
and partial analysis of the gene.  Proc Natl Acad Sci USA 1995,
92:1984-1988.

24. Yamazaki N, Shinohara Y, Shima A, Yamanaka Y, Terada H: Isolation
and characterization of cDNA and genomic clones encoding
human muscle type carnitine palmitoyltransferase I.  Biochim
Biophys Acta 1996, 1307:157-161.

25. Price N, Leij F van der, Jackson V, Corstorphine C, Thomson R,
Sorensen A, Zammit V: A novel brain-expressed protein related
to carnitine palmitoyltransferase I.  Genomics 2002, 80:433-442.

26. Kiens B: Skeletal muscle lipid metabolism in exercise and
insulin resistance.  Physiol Rev 2006, 86:205-243.

27. Rasmussen BB, Holmbäck UC, Volpi E, Morio-Liondore B, Paddon-
Jones D, Wolfe RR: Malonyl coenzyme A and the regulation of
functional carnitine palmitoyltransferase-1 activity and fat
oxidation in human skeletal muscle.  J Clin Invest 2002,
110:1687-1693.
Page 6 of 7
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2570282
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2570282
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2495113
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2495113
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8436255
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8436255
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8436255
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7613432
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17491667
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17491667
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16085373
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16085373
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1698152
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1698152
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1698152
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11574409
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11574409
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17515867
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17515867
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17515867
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2123890
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2123890
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2123890
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8638694
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8638694
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8638694
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11347757
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11347757
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9166669
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9166669
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16449300
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16449300
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16449300
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9216960
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9216960
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9216960
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12646730
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12646730
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12637257
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12637257
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12637257
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18063678
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18063678
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18063678
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12740011
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12740011
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12740011
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11443199
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11443199
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11443199
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16545081
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16545081
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7892212
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7892212
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7892212
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8679700
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8679700
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8679700
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12376098
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12376098
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16371598
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16371598
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12464674
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12464674
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12464674


Cardiovascular Diabetology 2008, 7:14 http://www.cardiab.com/content/7/1/14
Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

28. Colberg SR, Simoneau JA, Thaete FL, Kelley DE: Skeletal muscle
utilization of free fatty acids in women with visceral obesity.
J Clin Invest 1995, 95:1846-1853.

29. Goodpaster BH, Theriault R, Watkins SC, Kelley DE: Intramuscu-
lar lipid content is increased in obesity and decreased by
weight loss.  Metabolism 2000, 49:467-472.

30. Kelley DE, He J, Menshikova EV, Ritov VB: Dysfunction of mito-
chondria in human skeletal muscle in type 2 diabetes.  Diabe-
tes 2002, 51:2944-2950.

31. Ritov VB, Menshikova EV, He J, Ferrell RE, Goodpaster BH, Kelley
DE: Deficiency of subsarcolemmal mitochondria in obesity
and type 2 diabetes.  Diabetes 2005, 54:8-14.

32. Simoneau JA, Veerkamp JH, Turcotte LP, Kelley DE: Markers of
capacity to utilize fatty acids in human skeletal muscle: rela-
tion to insulin resistance and obesity and effects of weight
loss.  FASEB J 1999, 13:2051-2060.

33. Lane RH, Kelley DE, Ritov VH, Tsirka AE, Gruetzmacher EM:
Altered expression and function of mitochondrial beta-oxi-
dation enzymes in juvenile intrauterine-growth-retarded rat
skeletal muscle.  Pediatr Res 2001, 50:83-90.

34. Petersen KF, Dufour S, Befroy D, Garcia R, Shulman GI: Impaired
mitochondrial activity in the insulin-resistant offspring of
patients with type 2 diabetes.  N Engl J Med 2004, 350:664-671.

35. Thompson AL, Cooney GJ: Acyl-CoA inhibition of hexokinase in
rat and human skeletal muscle is a potential mechanism of
lipid-induced insulin resistance.  Diabetes 2000, 49:1761-1765.

36. Turinsky J, O'Sullivan DM, Bayly BP: 1,2-Diacylglycerol and cera-
mide levels in insulin-resistant tissues of the rat in vivo.  J Biol
Chem 1990, 265:16880-16885.

37. Itani SI, Zhou Q, Pories WJ, MacDonald KG, Dohm GL: Involve-
ment of protein kinase C in human skeletal muscle insulin
resistance and obesity.  Diabetes 2000, 49:I1353-1358.

38. Takayama S, White MF, Kahn CR: Phorbol ester-induced serine
phosphorylation of the insulin receptor decreases its tyro-
sine kinase activity.  J Biol Chem 1988, 263:3440-3447.

39. Ravichandran LV, Esposito DL, Chen J, Quon MJ: Protein kinase C-
zeta phosphorylates insulin receptor substrate-1 and impairs
its ability to activate phosphatidylinositol 3-kinase in
response to insulin.  J Biol Chem 2001, 276:3543-3549.

40. Itani SI, Pories WJ, MacDonald KG, Dohm GL: Increased protein
kinase C theta in skeletal muscle of diabetic patients.  Metab-
olism 2001, 50:553-557.
Page 7 of 7
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7706491
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7706491
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10778870
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10778870
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10778870
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12351431
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12351431
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15616005
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15616005
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10544188
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10544188
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10544188
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11420423
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11420423
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11420423
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14960743
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14960743
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14960743
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11078441
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11078441
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11078441
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2211599
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2211599
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3125181
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3125181
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3125181
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11063744
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11063744
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11063744
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11319716
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11319716
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Methods
	Results
	Conclusion

	Background
	Methods
	Animal model
	Plasma assays
	RNA isolation and cDNA synthesis
	Real-time RT-PCR
	Western immunoblotting
	Statistical analysis

	Results
	Animal weights and metabolic profile
	Insulin Receptor
	Expression of LCFA metabolism regulatory enzymes

	Discussion
	Conclusion
	Abbreviations
	Competing interests
	Authors' contributions
	References

