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Abstract
Accelerated atherosclerosis is one of the major vascular complications of diabetes. Factors
including hyperglycemia and hyperinsulinemia may contribute to accelerated vascular disease.
Among the several mechanisms proposed to explain the link between hyperglycemia and vascular
dysfunction is the hexosamine pathway, where glucose is converted to glucosamine. Although
some animal experiments suggest that glucosamine may mediate insulin resistance, it is not clear
whether glucosamine is the mediator of vascular complications associated with hyperglycemia.
Several processes may contribute to diabetic atherosclerosis including decreased vascular heparin
sulfate proteoglycans (HSPG), increased endothelial permeability and increased smooth muscle cell
(SMC) proliferation. In this study, we determined the effects of glucose and glucosamine on
endothelial cells and SMCs in vitro and on atherosclerosis in apoE null mice. Incubation of
endothelial cells with glucosamine, but not glucose, significantly increased matrix HSPG (perlecan)
containing heparin-like sequences. Increased HSPG in endothelial cells was associated with
decreased protein transport across endothelial cell monolayers and decreased monocyte binding
to subendothelial matrix. Glucose increased SMC proliferation, whereas glucosamine significantly
inhibited SMC growth. The antiproliferative effect of glucosamine was mediated via induction of
perlecan HSPG. We tested if glucosamine affects atherosclerosis development in apoE-null mice.
Glucosamine significantly reduced the atherosclerotic lesion in aortic root. (P < 0.05) These data
suggest that macrovascular disease associated with hyperglycemia is unlikely due to glucosamine.
In fact, glucosamine by increasing HSPG showed atheroprotective effects.

Introduction
Generalized vascular dysfunction including microvascular
(nephropathy) and macrovascular (accelerated athero-
sclerosis) is a characteristic of diabetic complications [1-
3]. Hyperglycemia by several mechanisms may contribute
to increased atherosclerosis. Glucose can increase intracel-
lular oxidative stress and generation of reactive oxygen

species in endothelial cells [3]. This can result in activa-
tion of Redox sensitive transcription factors such as
nuclear factor kappa B and inflammatory genes. Glucose
can form adducts with proteins by non-enzymatic mecha-
nisms leading to generation of glycated proteins and
advanced glycation end products (AGE) [4,5]. In different
animal models blocking AGE and its receptor RAGE
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reduced vascular disease [6]. Another pathway that has
been postulated to play an important role in insulin resist-
ance and potentially vascular complications is the hex-
osamine pathway [7,8]. In this pathway glucose is
converted to glucosamine by the enzymatic actions of
glutamine:fructose-6-phosphate amidotransferase
(GFAT). In vitro in certain cell types glucosamine was
shown to increase expression of growth factor TGFβ and
PAI-1 [9,10]. Glucosamine is also the precursor for prote-
oglycan biosynthesis and increases proteoglycan produc-
tion including heparan sulfate proteoglycan (HSPG)
production in different cell types including vascular cells.

In vessel wall HSPG are produced by all cell types either as
components of cell membrane (syndecan and glypican)
or extracellular matrix (perlecan) [11]. Perlecan is the
major HSPG of endothelial cells and SMC [12,13]. In
atherosclerotic lesions the content of HSPG is reduced
and studies show an inverse correlation between the
amount of cholesterol in the lesion and the concentration
of HS [14,15]. Thus, unlike chondroitin sulfate proteogly-
cans, HSPG is negatively correlated with atherosclerosis.

In this study we show that glucosamine and glucose have
distinct effects on vascular HSPG and cell growth and glu-
cosamine by virtue of its beneficial effects in vascular cells
also reduces atherosclerosis in mice.

Methods
Materials
D (+) Glucosamine and D(+) glucose were purchased
from Sigma Chemical Co. (St. Louis, MO). L- (4,5 3H)
Leucine, 3H-Thymidine, (35S) as sulfate in aqueous solu-
tions and (125I) were from Amersham Life Science Corp
(Arlington Heights, IL). Heparinase, heparitinase and
chondroitinase ABC were purchased from Seikagaku
America Inc (Bethesda, MD).

Lipoproteins
LDL (d < 1.063), Lp(a) (d = 1.11) and HDL (d = 1.1–1.23)
were isolated from fresh plasma by sequential ultracentrif-
ugation. For some experiments 125I-LDL radio-iodinated
using iodine monochloride [5] was used.

Endothelial cells
Bovine aortic endothelial cells were isolated and cultured
as described [20]. The cells (5–20 passages) were grown in
minimal essential medium containing 10% FBS (Life-
Technologies, Gaithersburg, MD).

125I-LDL transport
For 125I-LDL transport experiments, endothelial cells were
grown in tissue culture inserts (Falcon-0.3 µm pore size)
to facilitate its access to the upper (luminal) and lower
(subendothelial) surface of endothelial cells. The barrier

function of the endothelial cell monolayer was examined
as previously reported [16], using [3H]dextran (average
mol wt 150,000) and [14C]albumin. Transport of these
molecules from the apical to the basolateral side of the
monolayers was < 5%/h, a rate similar to that reported by
others. At the conclusion of each LDL transport experi-
ment, the monolayers were stained with 2% toluidene
blue to verify the uniformity of the monolayer. On the day
of the experiment, 125I-labeled LDL was added to the
upper chamber and following incubation radioactivity in
the lower-chamber medium and associated with the extra-
cellular matrix was determined. The total amount of each
lipoprotein transported across the monolayers (net trans-
port) is the sum of these two measurements. To determine
125I-labeled LDL associated with the subendothelial cell
matrix, the cells were incubated for 10 min with medium
containing 50 U/ml of heparin (Elkins-Sinn, Inc., Cherry
Hill, NJ)

Metabolic labeling and preparation of subendothelial 
matrix (SEM)
Endothelial PG was radiolabeled with (35S) sulfate along
with the indicated doses of glucosamine for 12–16 h. Cel-
lular PG were assessed by removing the cells with Triton
X-100/NH4OH. Endothelial cells were grown in 24 or 48
well plates (Falcon: Beckton Dickinson, Lincoln Park, NJ).
Subendothelial matrix (SEM) was prepared as described
[17]. Briefly, confluent monolayers of endothelial cells
were washed three times with PBS and incubated for 10
min in a solution containing 0.1% TritonX-100 and 20
mM NH4OH at room temperature. Detached cells were
removed by washing four times with PBS. This procedure
leaves the intact matrix attached to the surface of the well.
Matrix PG was extracted with 6 M guanidine HCl for 4 h
at 4°C. For enzyme treatments, SEM was incubated with a
mixture of heparinase and heparitinase (1 U/ml each) or
chondroitinase ABC (1–2 U/ml) for 3 h at 37°C.

Glycosaminoglycan (GAG) size estimation
To prepare GAG chains, 1-ml aliquots of purified cell sur-
face PG were treated with 100 µl of 10 N NaOH for 18 h
at 26°C with constant shaking and then neutralized with
10 N HCl [18]. To remove core proteins, the samples were
adjusted to 7 M urea and loaded on 1-ml DEAE mini col-
umn that was previously equilibrated with 3 bed volumes
of 7 M urea, 0.1% Triton X-100, 0.2 M NaCl in 0.05 M
Tris, pH7.2. Peak fractions were pooled and dialyzed
against 10 mM Tris and 0.1% Triton X-100 to remove
urea. To determine GAG size, 0.6 ml of the above protein
free GAG were chromatographed on Sephacryl-200 (Phar-
macia-Biotech) gel-filtration column that was previously
calibrated with known molecular weight standards using
0.2 M NaCl as an eluate.
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Monocytes and adhesion assay
THP-1 cells were purchased from the American Type Cul-
ture Collection (Rockville, MD) and were grown in RPMI
1640 (Gibco-Laboratories, Grand Island, NY) containing
10% fetal bovine serum (Gemini Bioproducts Inc., Cala-
basas, CA).

Adhesion assay was done as described previously [19].
Monocytes were incubated in leucine-free DMEM-BSA
medium before labeling. 100 µCi of (3H) leucine was
added to 1 × 107 cells and incubated for another 2 h under
cell culture conditions. The labeled cells were centrifuged
at 800 rpm for 5 min to remove the unincorporated label.
The cells were washed three times and re-suspended in
DMEM-BSA and then added to endothelial cell monolay-
ers or to SEM in 24 well plates (24 × 105 cells/well). Bind-
ing was performed for 2 h at 37°C. Unbound monocytes
were removed by washing four times with DMEM-BSA
and the bound radioactivity was extracted with 0.5 N
NaOH for 1 h at 37°C and then counted.

SMC proliferation
Rat aortic SMCs were cultured as previously described [20]
in basal medium supplemented with growth factors,
bFGF, hEGF and 5% fetal bovine serum (Clonetics Corp,
San Diego, CA). SMCs were plated in low density (9 × 104

cells/ well) in 6 or 12 well plates and cultured in the pres-
ence or absence of 30 mM glucose or 2.5 mM glucosamine
for three days. The cells were then trypsinized and an aliq-
uot of trypsinate was counted for the final cell number
with hemacytometer. Net growth was assessed by sub-
tracting the final cell number from the initial cell number.

In other experiments, cells grown under above conditions
were labeled with (3H)-thymidine (5 µCi/ml) for 6 h and
the cells were washed four times with DMEM-BSA to
remove unincorporated label. The cells were then lysed by
0.5 N NaOH and the thymidine incorporation into the
DNA was assessed.

Animal studies
Sulfate incorporation in tissues of mice
To determine if glucosamine increases HS in vivo (deter-
mined by 35SO4 incorporation), C57Bl/6J mice from Jack-
son Laboratories (Bar Harbor, Maine) (8 weeks old, three
controls and three glucosamine) were given saline or
saline containing 5 mg/kg of glucosamine intraperito-
neally for 3 days. On the day of experiment, mice were
given 100 µCi of 35SO4 in 100 µl of saline. Mice were sac-
rificed after 4 h, tissues were perfused with PBS and liver
and heart together with proximal aorta, were removed.
Tissues were homogenized with polytron for 30 sec in ice
cold HEPES buffer containing 4 M urea, 0.5% CHAPS, 0.5
M NaCl, 1 mM each of PMSF, benzamidine-hydrochlo-
ride and 5 µg/ml of leupeptin. Tissue homogenates were

centrifuged (14000 rpm, 20 min) and the supernatants
were dialyzed extensively against PBS to remove low
molecular weight free sulfate. Aliquots of dialyzed super-
natants were precipitated with 3 volumes of alcohol and
counted and the radioactivity was expressed per mg of tis-
sue protein.

Glucosamine effects on atherosclerosis
Male apoE-/- mice on C57BL/6J background were pur-
chased from Jackson Laboratories (Bar Harbor, Maine).
Mice were housed at 25°C on a 12 h light-dark cycle and
were fed on a chow diet and water ad libitum throughout
the study. At four weeks of age, they were randomly
divided into vehicle (n = 7) and glucosamine treated (n =
8) groups. Glucosamine were administered intraperito-
neally once a day (5 mg/kg). The study was terminated at
12 weeks of age. Mice were euthanized by CO2 and exan-
guination. Blood samples were collected for glucose and
lipid assay by Colorimetric assays (Sigma Diagnostics).
Aortic roots were snap frozen in (optimal cutting temper-
ature) OCT for lesion evaluation by Oil-Red-O staining.

Results
Glucosamine but not glucose increases 35SO4 
incorporation into endothelial HSPG
To determine whether glucosamine increases endothelial
HS production, aortic endothelial cell proteoglycans were
labeled with 35S sulfate. Glucosamine treatment increased
35SO4 incorporation into the media PG by 2 fold and into
matrix PG by 3 fold (Figure 1A). Addition of glucose (30
mM) to the medium did not affect PG production. Enzy-
matic analysis showed that the increase was found to be
exclusively in HSPG and glucosamine treatment did not
affect CS/DS PG in endothelial cells (Figure 1B). Perlecan
is the major HSPG secreted by endothelial cells, we there-
fore tested if the increase was in perlecan. Real time PCR
analysis showed a 1.9 fold increase in perlecan mRNA
(Figure 1C bars) and consistent with this immunoprecip-
itation analysis showed that media from glucosamine
treated cells contain 2.3 fold perlecan in medium (Figure
1C line). Thus these data suggest that glucosamine prima-
rily increased endothelial cell perlecan. Highly sulfated
blocks of HS are referred to as heparin-like HS, which con-
fer several biological properties to HS. To identify
heparin-like HS GAG, matrix HSPG were subjected to
heparitinase digestion, followed by low pH nitrous acid
digestion [18,21]. Heparitinase-resistant and nitrous acid-
sensitive HS was increased by two fold (2300 cpm in con-
trol versus 4550 cpm in glucosamine treated) suggesting
that glucosamine treatment of endothelial cells increased
heparin-like HS. Glucose or glucosamine did not signifi-
cantly increase macrophage PG but glucosamine showed
a moderate increase in SMC HSPG (Figure 2).
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Glucosamine treatment improved endothelial barrier 
function
Subendothelial matrix HSPG is thought to play a key role
in endothelial barrier function, however, whether
decreased HSPG increases lipoprotein transport across
endothelial monolayers is not known. We first tested
whether removal of HSPG increases LDL transport across
endothelium. Removal of HSPG by heparinase treatment
led to a 2.1 fold increase in 125I-LDL transport at 10 min.
(Figure 3A). At 15 min and 30 min the increase in LDL
transport was 57% and 36% higher than controls. Con-
versely, after glucosamine treatment, 125I-LDL transport

across the EC monolayers decreased by 15–22% at differ-
ent time points in glucosamine treated cells (Figure 3B).

Monocyte binding to matrix is decreased in glucosamine 
treated endothelial cells
We previously showed that removal of HSPG increases
monocyte retention in the subendothelial matrix [19]. We
determined THP-1 monocyte to the subendothelial
matrix prepared from control, glucose and glucosamine-
treated cells. Monocyte binding to the glucosamine stim-
ulated endothelial cells was decreased by 52% compared
to non-stimulated cells (Fig. 3C). In contrast monocyte

A. Glucosamine treatment increases 35SO4 incorporation into PGFigure 1
A. Glucosamine treatment increases 35SO4 incorporation into PG. Endothelial cells were labeled with 35S sulfate (25 µCi/ml) in 
medium alone (Control) or medium containing 30 mM glucose or 2.5 mM glucosamine 16 h. Radioactivity associated with pro-
teoglycans (PG) from cells, media and extracellular matrix was determined. Values are expressed as mean ± SD B. Glu-
cosamine mediated increase in PG is mostly in heparan sulfate proteoglycans (HSPG). Media and matrix PG prepared from 
control and glucosamine treated endothelial cells were treated with chondroitinase ABC for 4 h at 37°C and undigested PG 
were precipitated and determined as HSPG. To determine if the undigested glycosaminoglycan (GAG) is HS, aliquots were 
subjected to low pH nitrous acid digestion. 1C. Glucose and glucosamine effects on perlecan mRNA (Real time PCR – 1C bar) 
and protein (immunoprecipitated protein in media 1C line) p < 0.01.
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binding to glucose-treated endothelial cells was slightly
increased similar to previous observations (20%, not
shown ref [22]).

Glucose and Glucosamine effects on PG in SMC- 
Glucosamine but not glucose treatment decreases SMC 
proliferation
We next determined the effects of glucose and glu-
cosamine on SMC proliferation. Sub-confluent SMC were
incubated in media containing 30 mM glucose or 2.5 mM
glucosamine for 48 h and net growth was determined.
Glucose treatment did not alter SMC growth as assessed
by cell number (Figure 4A) or thymidine incorporation
(Figure 4B). In contrast, the cell number and 3H thymi-
dine incorporation into the DNA was decreased by 60%
by glucosamine treatment (4A and B). The major HSPG
secreted by SMC is perlecan, which was known to nega-
tively correlate with SMC growth [11]. Immunoprecipita-
tion analysis showed a 2.5 fold increase in perlecan
protein in SMC treated with glucosamine (not shown).
We next tested whether perlecan mediates the antiprolif-
erative effect of glucosamine on SMC. Addition of an anti-
perlecan antibody completely abolished the antiprolifera-
tive effect of glucosamine on SMC proliferation (Figure
5). These results suggest that glucosamine treatment
increases perlecan production, which in turn modulates
SMC growth in proliferating cells. Consistent with a perle-

can-based mechanism, glucosamine did not inhibit
endothelial cell growth (Figure 4C)

Glucosamine increases HS and reduces atherosclerotic 
lesion of aortic root in vivo
We tested glucosamine effects on HSPG and atherosclero-
sis. When given intraperitoneally (5 mg/kg once a day for
3 days) glucosamine increased 35S sulfate incorporation
into HSPG in liver (by 61%) and heart (by 82%) (Figure
6). To determine the effects of glucosamine on atheroscle-
rosis, apoE null mice were treated with glucosamine at 5
mg/kg for 2 months. Plasma glucose and total cholesterol
was not affected by glucosamine (not shown). Oil Red-O
staining revealed 30% reduction in lesions in glu-
cosamine treated group (p < 0.05) (Figure 7). These data
suggest that macrovascular disease associated with hyper-
glycemia is unlikely due to glucosamine. In fact, glu-
cosamine by inducing HSPG showed atheroprotective
effects.

Discussion
Glucosamine is a precursor of GAG biosynthesis. In cells
glucosamine is produced from glucose by the hexosamine
pathway in a reaction requiring fructose 6-phosphate and
glutamine and catalyzed by the enzyme glutamine:fruc-
tose-6 phosphate amidotransferase [7,8]. About 1–2% of
the incoming glucose enters this pathway. Glucosamine is

Glucosamine effects on macrophage (A) and smooth muscle cells (SMC) (B) PGFigure 2
Glucosamine effects on macrophage (A) and smooth muscle cells (SMC) (B) PG. THP-1 human monocyte-macrophages or 
confluent monolayers of rat aortic SMC were labeled with 35SO4 in medium or medium containing 2.5 mM glucosamine or 
medium containing 30 mM glucose (for SMC) for 16 hours. Total PG and CS/DS PG and HSPG were determined as described 
in Figure 1B. (data not mentioned in the Result)
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primarily used for protein glycosylation and GAG
synthesis [23]. Although cells can synthesize glucosamine,
exogenous glucosamine can also be taken up and con-
verted to its 6-phosphate derivative, which can then be
utilized for HSPG synthesis. Current studies show that
glucose and glucosamine have distinct effects on vascular
HSPG and cell proliferation. Unlike glucose, glucosamine
increased matrix HSPG (perlecan) production both in
endothelial cells and SMC. Glucosamine increased sulfate
incorporation specifically into HSPG.

Several previous studies suggested a role for glucosamine
in the development of insulin resistance [8,24]. Based on
several in vitro studies glucosamine was also suggested to
be a player in mediating the vascular complications [7,9].
These observation received great attention because glu-
cosamine is frequently used by patients with osteoarthritis
[25]. However, recent studies show that in humans at
doses used by arthritis patients glucosamine does not
appear to induce insulin resistance [26].

A. HSPG modulate LDL transport across EC monolayersFigure 3
A. HSPG modulate LDL transport across EC monolayers. Endothelial cells were grown to confluence in tissue culture inserts 
(Falcon, 0.3 µm pore size) in 24 well plates to facilitate its access to the upper (luminal) and lower (subendothelial) surface of 
endothelial cells. The cells were incubated with medium alone (control) or medium containing 1 unit/ml each of heparinase and 
heparitinase in the bottom chamber for 2 h at 37°C. 125I-LDL was then added to the cells in the upper chamber and the 125I-
LDL appeared in the media from the lower chamber was counted. Values represent Mean ± SD of triplicate measurements. B. 
Glucosamine treatment decreases LDL transport. Endothelial cells on tissue culture inserts were incubated with medium alone 
or medium containing 2.5 mM glucosamine for 16 h. 125I-LDL transport was then determined as described above. Figure 3C. 
Monocyte adhesion to glucosamine treated endothelial cells decreases. Endothelial cells were grown to confluence in 24 well 
tissue culture plates. Cells were then incubated in medium or medium with glucosamine for 16 h. Subendothelial matrix was 
prepared from control and glucosamine treated endothelial cells and incubated with (3H)leucine labeled THP-1 monocytes for 
2 h. Unbound monocytes were washed four times with DMEM-BSA and the bound radioactivity was determined.
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Loss of endothelial HS has been postulated to lead to sev-
eral pathological events, in particular to events related to
atherosclerosis [13,27]. Agents that decrease endothelial
HSPG include, lipopolysaccharide, TNF-alpha [28],
homocysteine [29], lysolecithin and oxidized LDL [30].
Thus, decrease in HS may be a general inflammatory
reaction.

In atherosclerosis, CS/DS PG positively correlated with
lesion progression [14,15]. Thus, glucosamine treatment
not only increased athero-protective HSPG but also
decreased (in SMC, figure 2B) or did not affect (in
endothelial cell, figure 1B) atherogenic CS/DS PG. Glu-
cosamine also increased the amount of heparin-like HS
(oligosaccharide sequences that are resistant to hepariti-
nase digestion but sensitive to heparinase and low pH
nitrous acid) in endothelial cells. Subendothelial HSPG
(perlecan) contains substantial amounts of these
sequences [31]. In our experiments, glucosamine prima-
rily increased extracellular HSPG (in media and in the
matrix).

Glucosamine treatment also inhibited SMC proliferation.
The extent of this inhibition was much greater than that of

Glucosamine treatment decreases the growth of SMC (A and B) but not endothelial cell (C) proliferationFigure 4
Glucosamine treatment decreases the growth of SMC (A and B) but not endothelial cell (C) proliferation. Sub-confluent SMC 
(9 × 104/well) were incubated in growth medium or growth medium containing 2.5 mM glucosamine or 30 mM glucose for 24–
48 h and cell growth was determined. (A) Initial and final cell (SMC) number was counted and net growth was determined. (B) 
SMC were labeled with 3H-Thymidine and its incorporation into the DNA was assessed. (C) Endothelial cell growth was deter-
mined by thymidine incorporation into DNA.

The antiproliferative effect of glucosamine requires perlecanFigure 5
The antiproliferative effect of glucosamine requires perlecan: 
SMC proliferation was carried out as described in Figure 4 
with or without anti-perlecan antibody (10 µg/ml) in the 
presence or absence of glucosamine.
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other antiproliferative substances such as apoE, nitric
oxide and TGF-β (not shown). The antiproliferative effect
of glucosamine is most likely due to increased HSPG pro-
duction in media. It has been well documented that while
cell surface HSPG are required for growth factor activity
(as co-receptors) exogenous HSPG are a potent inhibitors
of SMC proliferation [32,33]. Perlecan is the major HSPG
secreted by SMC and it negatively correlates with SMC
proliferation [34]. In the present studies an anti-perlecan
antibody completely blocked glucosamine antiprolifera-
tive effect. These data suggest that glucosamine inhibits
SMC proliferation by increasing media perlecan. These
data also show that the SMC growth inhibition by glu-
cosamine is not due to general cell toxicity. Among the
vascular cells only SMC, but not endothelial cells and
macrophages, are sensitive to HSPG inhibition. Consist-
ent with this glucosamine did not inhibit growth of
endothelial cells.

How glucosamine increased perlecan production is not
clear. Our data suggest that glucosamine increased HS
GAG content but not chain length. Because perlecan con-

tains only three HS chains per core protein, it is conceiva-
ble that more perlecan core protein is associated with HS
chains facilitating its secretion. Alternatively, glucosamine
may have induced perlecan expression. Glucosamine is
also utilized for glycosylation of proteins including
certain transcription factors. Glycosylation state of the
transcription factors affects their activity [35]. Thus, it is
conceivable that glucosamine treatment increased the gly-
cosylation of transcription factors involved in perlecan
expression. Glucosamine was also shown to induce
growth factor expression [36-38], such as TGFβ, which can
stimulate perlecan [39]. However, it should be noted that
in these studies, in contrast to the present experiments,
high concentrations of glucose had the same effect as that
of glucosamine. Nevertheless, if this occurs, since perlecan
antibody blocked the antiproliferative effect of glu-
cosamine, these data raise the possibility that the antipro-
liferative effects of TGFβ are mediated by perlecan.

Our data also showed that glucosamine administration to
mice increased 35SO4 incorporation in tissues. Glu-
cosamine is taken by cells via the glucose transporters and
is generally absent in circulating plasma [40]. A dose of 5
mg/kg of glucosamine for three days increased 35SO4
incorporation into the liver by 82% and into hearts (con-
taining proximal aorta) by 61%. It remains to be deter-
mined whether this increase is specifically in HSPG. The
in vivo effect of glucosamine was tested in one other

Glucosamine increases 35SO4 incorporation in vivoFigure 6
Glucosamine increases 35SO4 incorporation in vivo. To 
determine if glucosamine can increase tissue PG, mice were 
injected with glucosamine (intraperitoneal, 100 ul containing 
5 mg, every other day for 3 days). On the day of the experi-
ment 35SO4 was injected intravenously and mice were sacri-
ficed after 4 h. Following perfusion with saline, liver, and 
heart were removed and homogenized in phosphate buffered 
saline containing 1 mM PMSF, 1 mM benzamidine and 0.5% 
CHAPS. PG were precipitated with 3 volumes of 100% alco-
hol. 35S-cpm in the precipitate was determined.

Glucosamine reduces atherosclerotic lesion of aortic root in apoE null miceFigure 7
Glucosamine reduces atherosclerotic lesion of aortic root in 
apoE null mice. apoE null mice were treated with glu-
cosamine intraperitoneally at 5 mg/kg for 2 months from 4 
weeks to 12 weeks of age. At the end of the study, mice 
were euthanized. Aortic roots were collected and snap fro-
zen in OCT for lesion evaluation by Oil-Red-O staining.
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study. Because CS and DS PG are thought to mediate lipo-
protein retention and therefore, atherogenic. Recent in
vitro studies showed that glucosamine induced
proteoglycans have reduced binding to LDL therefore less
atherogenic [41]. An earlier study looked at the effect of
glucosamine on plasma and aortic cholesterol in rabbits
[42]. Surprisingly, this study found a two fold decrease in
cholesterol/unit-wet weight of aorta. However, our data
showing that glucosamine increases only HSPG but not
CS/DS may explain why lipoprotein accumulation is
decreased. The ability of glucosamine to inhibit athero-
genesis has recently been postulated [43] and has been
demonstrated in our apoE null mice study. This occurred
without changes in plasma glucose and lipids. Taken
together with our present data, studying the effects of
increased HSPG on atherosclerosis appears to be feasible
in mice.

In summary, our data show that glucosamine increases
HSPG production in vascular cells and 35SO4 incorpora-
tion into tissue. Atherogenic PG, like CS/DS PG were not
increased. By increasing HSPG, glucosamine reduced
atherogenic events including lipoprotein transport,
monocyte retention and SMC proliferation, combined
with it protective effect on atherosclerotic lesion in apoE
null mice, raising the possibility that it is a potential anti-
atherogenic agent.

Abbreviations
HSPG – heparan sulfate proteoglycans, PG-proteoglycan,
LDL-low density lipoprotein, SMC – smooth muscle cell,
GAG – glycosaminoglycan
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